Lecture 11

■ In this lecture we will look at:

- Measuring currents
- Measuring potentials.
- Circuits with resistance and capacitance.
- After this lecture, you should be able to answer the following questions:
- Explain why the resistance of an ammeter must be small and the resistance of a voltmeter large.
- Write down the equation describing how the current in a series circuit containing a capacitance C , a resistance R, an emf \mathcal{E} and a switch changes from the instant that the switch is closed.

Measuring Current

- The ammeter is used to measure current.
- Must be inserted in the circuit (in series) at the point at which the current is to be measured.

- The resistance of the ammeter, R_{A}, must be small $\left(R_{A} \ll R+r\right)$ otherwise the meter causes a change in the current.

- Example, if $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{r}=200 \Omega$, $\mathrm{R}_{\mathrm{A}}=10 \Omega$ and $\mathcal{E}=12 \mathrm{~V}$:
- $\mathrm{i}=12 / 1200=10 \mathrm{~mA}$ before insertion of ammeter...
- ...and afterwards

$$
\mathrm{i}^{\prime}=\frac{12}{1000+200+10}=9.92 \mathrm{~mA}
$$

Measuring Potential

- The voltmeter is used to measure potential.
- Must be connected across (in parallel with) the component over which the potential is to be measured.

- The resistance of the voltmeter, R_{V}, must be large ($\mathrm{R}_{\mathrm{V}} \gg \mathrm{R}+\mathrm{r}$) otherwise the meter changes V .

- Example, if $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{r}=200 \Omega$, $\mathrm{R}_{\mathrm{V}}=100 \mathrm{k} \Omega$ and $\mathcal{E}=12 \mathrm{~V}$:
- Before insertion of voltmeter $\mathrm{i}=10 \mathrm{~mA}$, so $\mathrm{V}=0.01 \times 1000=10 \mathrm{~V}$.
- Afterwards the resistance seen by E is:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{eq}} & =\mathrm{r}+\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{R}_{\mathrm{v}}}\right)^{-1}=\mathrm{r}+\frac{\mathrm{R} \mathrm{R}_{\mathrm{V}}}{\mathrm{R}+\mathrm{R}_{\mathrm{v}}} \\
& =\frac{\mathrm{r}\left(\mathrm{R}+\mathrm{R}_{\mathrm{v}}\right)+\mathrm{R}_{\mathrm{v}}}{\mathrm{R}+\mathrm{R}_{\mathrm{v}}}=1190.1 \Omega
\end{aligned}
$$

Measuring Potential

■ Hence new current:

$$
\mathrm{i}^{\prime}=\frac{E}{\mathrm{R}_{\mathrm{eq}}}=\frac{12}{1190}=10.08 \mathrm{~mA} .
$$

- The resistance over which the potential is measured is:
$\mathrm{R}^{\prime}=\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{R}_{\mathrm{v}}}\right)^{-1}=\frac{\mathrm{R}_{\mathrm{v}}}{\mathrm{R}+\mathrm{R}_{\mathrm{v}}}=990.1 \Omega$.

- From these we obtain potential measured by voltmeter:

$$
V^{\prime}=i^{\prime} \mathrm{R}^{\prime}
$$

$$
\begin{aligned}
& =\frac{E}{\frac{r\left(R+R_{V}\right)+R R_{V}}{R+R_{V}}} \frac{R R_{V}}{R+R_{V}} \\
& =\frac{E R R_{V}}{r\left(R+R_{V}\right)+R R_{v}}
\end{aligned}
$$

- Numerically,

$$
\begin{aligned}
\mathrm{V}^{\prime} & =\mathrm{i}^{\prime} \mathrm{R}^{\prime} \\
& =0.01008 \times 990 \\
& =9.98 \mathrm{~V} .
\end{aligned}
$$

■ Note "potential divider":

$$
\mathrm{V}_{\mathrm{R}^{\prime}}=12 \times 990.1 / 1190, \mathrm{~V}_{\mathrm{r}}=12 \times 200 / 1190
$$

Circuits with Resistance and Capacitance

- First consideration of circuits in which current varies with time: charging a capacitor.

- Potential across capacitor $\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{q}(\mathrm{t}) / \mathrm{C}$.
- Potential across resistor
$V_{R}(t)=i(t) R$.
- Note these change with time!
- Applying Kirchoff’s loop rule:

$$
E-i(t) R-\frac{q(t)}{C}=0
$$

- Cannot solve as contains two variables, $\mathrm{i}(\mathrm{t})$ and $\mathrm{q}(\mathrm{t})$.
- However: $\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}$.
- Hence, $\mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{\mathrm{q}}{\mathrm{C}}=\mathcal{E}$
- Try solution:

$$
q=C E(1-\exp (-t / R C))
$$

- Differentiating:

$$
\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{E}{\mathrm{R}} \exp (-\mathrm{t} / \mathrm{RC})
$$

Circuits with Resistance and Capacitance

- Substitute into equation to check have solution.
- $\mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{\mathrm{q}}{\mathrm{C}}$
$=\mathrm{R} \frac{\mathrm{E}}{\mathrm{R}} \exp \left[-\frac{\mathrm{t}}{\mathrm{RC}}\right]+\frac{1}{\mathrm{C}} \mathrm{C} \mathcal{E}\left(1-\exp \left[-\frac{\mathrm{t}}{\mathrm{RC}}\right]\right)$
$=\mathcal{E} \exp \left[-\frac{\mathrm{t}}{\mathrm{RC}}\right]+\mathcal{E}-\mathcal{E} \exp \left[-\frac{\mathrm{t}}{\mathrm{RC}}\right]$
$=\mathcal{E}, \mathrm{QED}$.
- The quantity $\tau=\mathrm{RC}$ is the time constant of the circuit: units seconds.
- Using $\mathrm{q}=\mathrm{CV}$ see solution can be written:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}}=\frac{\mathrm{q}}{\mathrm{C}}=\mathcal{E}(1-\exp (-\mathrm{t} / \mathrm{RC})) \tag{11.2}
\end{equation*}
$$

- The differential w.r.t. time is the current through the circuit:

$$
\begin{equation*}
\mathrm{i}(\mathrm{t})=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{E}{\mathrm{R}} \exp (-\mathrm{t} / \mathrm{RC}) \tag{11.3}
\end{equation*}
$$

- Check get expected limits:
- $\mathrm{q}(0)=0$.
- $\mathrm{V}(0)=0$.
- $\mathrm{i}(0)=E / \mathrm{R}$, (i.e. maximum current when switch first closed).
- $\mathrm{q}(\infty)=\mathrm{C} E$.
- $\mathrm{V}(\infty)=E$.
- $\mathrm{I}(\infty)=0$.

Circuits with Resistance and Capacitance

- Now think about discharging capacitor:

- Using Kirchoff's loop rule:
$i(t) R+\frac{q(t)}{C}=0$ or
$R \frac{d q}{d t}+\frac{q}{C}=0$
[11.4]
- Try solution $\mathrm{q}=\mathrm{q}_{0} \exp (-\mathrm{t} / \mathrm{RC})$.
- Differentiating and substituting we get:

$$
\begin{aligned}
& \mathrm{R} \frac{\mathrm{dq}}{\mathrm{dt}}+\frac{\mathrm{q}}{\mathrm{C}} \\
= & -\mathrm{R} \frac{\mathrm{q}_{0}}{\mathrm{RC}} \exp \left[-\frac{\mathrm{t}}{\mathrm{RC}}\right]+\frac{1}{\mathrm{C}} \mathrm{q}_{0} \exp \left[-\frac{\mathrm{t}}{\mathrm{RC}}\right] \\
= & 0, \mathrm{QED} .
\end{aligned}
$$

- Voltage across C, current in circuit:

$$
\begin{align*}
V & =\frac{q}{C}=\frac{q_{0}}{C} \exp (-t / R C) \\
& =V_{0} \exp (-t / R C) \tag{11.5}\\
i & =\frac{d q}{d t}=-\frac{q_{0}}{R C} \exp (-t / R C) \\
& =i_{0} \exp (-t / R C) \tag{11.6}
\end{align*}
$$

Circuits with Resistance and Capacitance

- Look at example:
- $\mathrm{R}=1 \mathrm{k} \Omega, \mathrm{C}=1 \mu \mathrm{~F}$ so $\tau=1 \mathrm{~ms}$.
- $E=10 \mathrm{~V}$.
- Charge for 10 ms , then discharge:

■ If flip switch before charge
"complete" (here at $\mathrm{t}=2 \tau$):

