Lecture 10

- In this lecture we will look at:
- Electromotive force.
- Calculating the current in a circuit using the energy and potential methods.
- Internal resistance.
- Resistances in parallel.
- Resistances in multi-loop circuits.
- After this lecture, you should be able to answer the following questions:
- State Kirchoff's voltage and current rules: what alternative names are used for these rules?
- What is the current in a circuit in which resistors of 3Ω and 5Ω are connected in parallel with an emf of 9 V which has an internal resistance of 0.5Ω ?
- Describe how the loop and junction rules can be used to determine the current in a circuit consisting of a network of resistors and emfs.

Electromotive Force

- In order to make charge carriers flow round a circuit, an "electromotive force" or emf is needed.
- The job of a device providing an emf is to do work on the charges, pushing them through the resistance of the circuit.
- Common emf devices are:
- Batteries.
- Solar cells.
- Generators.
- All of these convert energy (chemical, light, mechanical) into electrical energy.

■ Consider circuit with emf \mathcal{E} :

- Within the emf, +ive charges move from low potential to high potential against the electric field.
■ The emf does an amount of work dW in moving a charge dq, define \mathcal{E} as: $\mathcal{E}=\frac{\mathrm{dW}}{\mathrm{dq}}\left(\right.$ units $\left.\mathrm{JC}^{-1}=\mathrm{V}\right)$.

Calculating the Current in a Circuit - Energy Method

- Consider a simple loop circuit containing an ideal emf and a resistor, connected with wires of negligible resistance:

- We know $\mathrm{P}=\mathrm{i}^{2} \mathrm{R}$, so in an interval dt , an amount of energy $\mathrm{i}^{2} \mathrm{R}$ dt will appear in the resistor.
- During this time, a charge dq $=\mathrm{idt}$ will have moved through the emf.
- The emf will have done an amount of work $\mathrm{dW}=\mathcal{E d q}=\mathcal{E} i d t$ on the charge.
- The work done by the emf must equal the energy appearing in the resistor.
- Hence $E=i R$.
- Solving for the current:
$\mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}}$
[10.1]

Current - Potential Method or Kirchoff's Voltage Rule

- Start at any point in the circuit and work round it, adding all the potential differences you come across.
- Kirchoff's voltage rule (or loop rule): The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

- Start at -ive terminal of emf, which we assume has a potential $\mathrm{V}_{\text {. }}$
- Move to +ive terminal, potential difference is \mathcal{E}.
- Move along wires, no potential change as these have negligible resistance.
- Move through the resistor, potential difference is -iR .
- Move along wires, no potential change as these have negligible resistance.
- Arrive back at point with potential V_{-}.
- From Kirchoff's law:

$$
\mathrm{V}_{-}+\mathcal{E}-\mathrm{iR}=\mathrm{V}_{-} \Rightarrow \mathcal{E}-\mathrm{iR}=0
$$

$$
\Rightarrow \mathrm{i}=\frac{\mathrm{E}}{\mathrm{R}}
$$

Internal Resistance

■ For our ideal emf: $E=i R$.

- Any real emf device has an internal resistance r , so

- An ideal emf will always have a potential across its terminals equal to its nominal value (e.g. 12 V for an ideal 12 V battery).
- A real emf will only have its nominal potential across its terminals when no current is flowing.

Resistance in More Complex Circuits

- Add internal resistance:

■ Now get:

$$
\begin{align*}
& \mathrm{V}_{-}+\mathcal{E}-\mathrm{ir}-\mathrm{iR}=\mathrm{V}_{-} \\
& \Rightarrow \mathcal{E}-\mathrm{i}(\mathrm{r}+\mathrm{R})=0 \\
& \Rightarrow \mathrm{i}=\frac{\mathcal{E}}{\mathrm{r}+\mathrm{R}} \tag{10.3}
\end{align*}
$$

- Add other resistances:
- An identical current i flows through each resistance.
- Hence

$$
\begin{aligned}
& E-i R_{1}-i R_{2}-i R_{3}=0 \\
& \Rightarrow i=\frac{E}{R_{1}+R_{2}+R_{3}}
\end{aligned}
$$

- The combination of resistors can be replaced by an equivalent resistance
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

Resistors in Parallel - Kirchoff's Current Rule

- Consider the following circuit:

■ We can see Kirchoff's current rule (or junction rule) must apply: The sum of the currents entering any junction must be equal to the $\operatorname{sum}_{\mathcal{E}}$ of the currents leaving the junction.

- This tells us: $\mathrm{i}=\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}$.

■ We also know that:

$$
i_{1}=E / R_{1}, i_{2}=E / R_{2} \text { and } i_{3}=E / R_{3} .
$$

- Substituting these in the above:

$$
\mathrm{i}=\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}=\frac{\mathrm{E}}{\mathrm{R}_{1}}+\frac{\mathrm{E}}{\mathrm{R}_{2}}+\frac{\mathrm{E}}{\mathrm{R}_{3}} .
$$

- The equivalent resistance for parallel resistors can then be found from:

Multi-loop Circuits

- Consider the circuit:

- Use loop rule LH loop: $\mathcal{E}=\mathrm{i}_{1} \mathrm{R}_{1}+\mathrm{i}_{2} \mathrm{R}_{2}+\mathrm{i}_{4} \mathrm{R}_{4}$
- Now for RH loop: $\mathrm{i}_{2} \mathrm{R}_{2}=\mathrm{i}_{3} \mathrm{R}_{3} \quad$ (2).
- For outermost loop:

$$
\begin{equation*}
\mathcal{E}=\mathrm{i}_{1} \mathrm{R}_{1}+\mathrm{i}_{3} \mathrm{R}_{3}+\mathrm{i}_{4} \mathrm{R}_{4} \tag{3}
\end{equation*}
$$

- Now use junction rule at point a:
$\mathrm{i}_{1}=\mathrm{i}_{2}+\mathrm{i}_{3}$
- And at point b:
$\mathrm{i}_{4}=\mathrm{i}_{2}+\mathrm{i}_{3}$
- Now have 5 equations for 4 unknowns, solve for i_{1}, i_{2}, i_{3} and i_{4}.
■ From (2) $i_{2}=i_{3} R_{3} / R_{2}$ or $i_{3}=i_{2} R_{2} / R_{3}$.
- From (4) $i_{1}=i_{3} \frac{R_{3}}{R_{2}}+i_{3}=i_{3}\left(\frac{R_{2}+R_{3}}{R_{2}}\right)$.
- From (4) and (5) $i_{4}=i_{1}$,
but also $i_{4}=i_{3}\left(R_{3} / R_{2}+1\right)$.
- From (1) and above:

$$
\mathcal{E}=\mathrm{i}_{1} \mathrm{R}_{1}+\mathrm{i}_{3} \mathrm{R}_{2} \frac{\mathrm{R}_{3}}{\mathrm{R}_{2}}+\mathrm{i}_{1} \mathrm{R}_{4}
$$

Multi-loop Circuits

- Substituting for i_{3} and rearranging:

$$
\begin{aligned}
\mathcal{E} & =i_{1} R_{1}+i_{1} \frac{R_{2}}{R_{2}+R_{3}} \frac{R_{2} R_{3}}{R_{2}}+i_{1} R_{4} \\
& =i_{1} R_{1}+i_{1} \frac{R_{2}}{R_{2}+R_{3}} R_{3}+i_{1} R_{4} \\
& =i_{1}\left(\frac{R_{1}\left(R_{2}+R_{3}\right)+R_{2} R_{3}+R_{4}\left(R_{2}+R_{3}\right)}{R_{2}+R_{3}}\right) \\
& \Rightarrow i_{1}=\frac{E\left(R_{2}+R_{3}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}} .
\end{aligned}
$$

- Strategy: use junction rule at every junction to give minimum number of unknown currents.
- Apply loop rule around same number of different loops as there are unknown currents.
- Solve equations for currents.
- For some circuits there may be better (simpler) strategies...
- E.g. here can find equivalent resistance due to R_{2} and R_{3} as these are in parallel:

$$
\frac{1}{\mathrm{R}_{23}}=\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}=\frac{\mathrm{R}_{2}+\mathrm{R}_{3}}{\mathrm{R}_{2} \mathrm{R}_{3}}
$$

- Total equivalent resistance is then

$$
\begin{aligned}
\mathrm{R}_{\mathrm{eq}} & =\mathrm{R}_{1}+\mathrm{R}_{23}+\mathrm{R}_{4} \\
& =\mathrm{R}_{1}+\frac{\mathrm{R}_{2} \mathrm{R}_{3}}{\mathrm{R}_{2}+\mathrm{R}_{3}}+\mathrm{R}_{4} \\
& =\frac{\mathrm{R}_{1}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)+\mathrm{R}_{2} \mathrm{R}_{3}+\mathrm{R}_{4}\left(\mathrm{R}_{2}+\mathrm{R}_{3}\right)}{\mathrm{R}_{2}+\mathrm{R}_{3}}
\end{aligned}
$$

- Hence total current is

$$
i_{1}=\frac{\mathcal{E}}{R_{e q}}=\frac{\mathcal{E}\left(R_{2}+R_{3}\right)}{R_{1} R_{2}+R_{1} R_{3}+R_{2} R_{3}+R_{2} R_{4}+R_{3} R_{4}} .
$$

