
Lecture 10

■ In this lecture we will look at:

♦ Electromotive force.

♦ Calculating the current in a 

circuit using the energy and 

potential methods.

♦ Internal resistance.

♦ Resistances in parallel.

♦ Resistances in multi –loop 

circuits.

■ After this lecture, you should be able 

to answer the following questions:

■ State Kirchoff’s voltage and current 

rules: what alternative names are 

used for these rules?

■ What is the current in a circuit in 

which resistors of 3 W and 5 W are 

connected in parallel with an emf of 

9 V which has an internal resistance 

of 0.5 W?

■ Describe how the loop and junction 

rules can be used to determine the 

current in a circuit consisting of a 

network of resistors and emfs.



Electromotive Force

■ In order to make charge carriers flow 

round a circuit, an “electromotive 

force” or emf is needed.

■ The job of a device providing an emf 

is to do work on the charges, pushing 

them through the resistance of the 

circuit.

■ Common emf devices are:

♦ Batteries.

♦ Solar cells.

♦ Generators.

■ All of these convert energy 

(chemical, light, mechanical) into 

electrical energy.

■ Consider circuit with emf E:

■ Within the emf, +ive charges move 

from low potential to high potential 

against the electric field.

■ The emf does an amount of work dW 
in moving a charge dq, define E as:
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Calculating the Current in a Circuit – Energy Method

■ Consider a simple loop circuit 

containing an ideal emf and a 

resistor, connected with wires of 

negligible resistance:

■ We know P = i2R, so in an interval 

dt, an amount of energy i2R dt will 

appear in the resistor. 

■ During this time, a charge dq = i dt

will have moved through the emf.

■ The emf will have done an amount of 
work dW = E dq = E i dt on the 

charge.

■ The work done by the emf must equal 

the energy appearing in the resistor.

■ Hence

■ Solving for the current:
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Current – Potential Method or Kirchoff’s Voltage Rule

■ Start at any point in the circuit and 

work round it, adding all the potential 

differences you come across. 

■ Kirchoff’s voltage rule (or loop rule): 

The algebraic sum of the changes in 

potential encountered in a complete 

traversal of any loop of a circuit must 

be zero.

■ Start at –ive terminal of emf, which we 

assume has a potential V-.

■ Move to +ive terminal, potential 
difference is E.

■ Move along wires, no potential change 

as these have negligible resistance.

■ Move through the resistor, potential 

difference is –iR.

■ Move along wires, no potential change 

as these have negligible resistance.

■ Arrive back at point with potential V-.

■ From Kirchoff’s law:
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Internal Resistance

■ For our ideal emf:

■ Any real emf device has an internal 

resistance r, so

■ An ideal emf will always have a 

potential across its terminals equal to 

its nominal value (e.g. 12 V for an 

ideal 12 V battery).

■ A real emf will only have its nominal 

potential across its terminals when no 

current is flowing.
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Resistance in More Complex Circuits

■ Add internal resistance:

■ Now get:

■ Add other resistances:

■ An identical 

current i flows 

through each 

resistance.

■ Hence

■ The combination 

of resistors can be 

replaced by an 

equivalent resistance
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Resistors in Parallel – Kirchoff’s Current Rule

■ Consider the following circuit:

■ We can see Kirchoff’s current rule 

(or junction rule) must apply: The 

sum of the currents entering any 

junction must be equal to the sum 

of the currents leaving the 

junction. 

■ This tells us: i = i1 + i2 + i3.

■ We also know that: 
i1 = E/R1, i2 = E/R2 and i3 = E/R3. 

■ Substituting these in the above:

■ The equivalent resistance for parallel 

resistors can then be found from:
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Multi-loop Circuits

■ Consider the circuit:

■ Use loop rule LH loop:

■ Now for RH loop:

■ For outermost loop:

■ Now use junction rule at point a:

■ And at point b:

■ Now have 5 equations for 4 

unknowns, solve for i1, i2, i3 and i4.

■ From (2)

■ From (4)

■ From (4) and (5)

but also

■ From (1) and above: 
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Multi-loop Circuits

■ Substituting for i3 and rearranging:

■ Strategy: use junction rule at every 

junction to give minimum number of 

unknown currents.

■ Apply loop rule around same number 

of different loops as there are 

unknown currents. 

■ Solve equations for currents.

■ For some circuits there may be better 

(simpler) strategies...

■ E.g. here can find equivalent 

resistance due to R2 and R3 as these 

are in parallel:

■ Total equivalent resistance is then

■ Hence total current is 
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