Lecture 10

- In this lecture we will look at:
 - Electromotive force.
 - Calculating the current in a circuit using the energy and potential methods.
 - Internal resistance.
 - Resistances in parallel.
 - Resistances in multi –loop circuits.

- After this lecture, you should be able to answer the following questions:
- State Kirchoff's voltage and current rules: what alternative names are used for these rules?
- What is the current in a circuit in which resistors of 3 Ω and 5 Ω are connected in parallel with an emf of 9 V which has an internal resistance of 0.5 Ω?
- Describe how the loop and junction rules can be used to determine the current in a circuit consisting of a network of resistors and emfs.

Electromotive Force

- In order to make charge carriers flow round a circuit, an "electromotive force" or emf is needed.
- The job of a device providing an emf is to do work on the charges, pushing them through the resistance of the circuit.
- Common emf devices are:
 - Batteries.
 - Solar cells.
 - Generators.
- All of these convert energy (chemical, light, mechanical) into electrical energy.

- Within the emf, +ive charges move from low potential to high potential against the electric field.
- The emf does an amount of work dW in moving a charge dq, define \mathcal{E} as: $\mathcal{E} = \frac{dW}{dq}$ (units JC⁻¹ = V).

Calculating the Current in a Circuit – Energy Method

Consider a simple loop circuit containing an ideal emf and a resistor, connected with wires of negligible resistance:

We know $P = i^2 R$, so in an interval dt, an amount of energy $i^2 R$ dt will appear in the resistor.

- During this time, a charge dq = i dt will have moved through the emf.
- The emf will have done an amount of work $dW = \mathcal{E} dq = \mathcal{E} i dt$ on the charge.
- The work done by the emf must equal the energy appearing in the resistor.
- Hence $\mathcal{E} = iR$.
- Solving for the current:

$$i = \frac{\mathcal{E}}{R} \qquad [10.1]$$

Current – Potential Method or Kirchoff's Voltage Rule

- Start at any point in the circuit and work round it, adding all the potential differences you come across.
- Kirchoff's voltage rule (or loop rule):
 The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

- Start at –ive terminal of emf, which we assume has a potential V_.
- Move to +ive terminal, potential difference is *E*.
- Move along wires, no potential change as these have negligible resistance.
- Move through the resistor, potential difference is –iR.
- Move along wires, no potential change as these have negligible resistance.
- Arrive back at point with potential V_.
- From Kirchoff's law:

$$\mathbf{V}_{-} + \mathcal{E} - \mathbf{i}\mathbf{R} = \mathbf{V}_{-} \Longrightarrow \mathcal{E} - \mathbf{i}\mathbf{R} = \mathbf{0}$$

$$\Rightarrow$$
 i = $\frac{\mathcal{E}}{R}$

Internal Resistance

- For our ideal emf: $\mathcal{E} = iR$.
- Any real emf device has an internal resistance r, so

- An ideal emf will always have a potential across its terminals equal to its nominal value (e.g. 12 V for an ideal 12 V battery).
- A real emf will only have its nominal potential across its terminals when no current is flowing.

Resistance in More Complex Circuits

Resistors in Parallel – Kirchoff's Current Rule

- We can see Kirchoff's current rule (or junction rule) must apply: The sum of the currents entering any junction must be equal to the sum $_{\mathcal{E}}$ of the currents leaving the junction.
- This tells us: $i = i_1 + i_2 + i_3$.

- We also know that: $i_1 = \mathcal{E}/R_1$, $i_2 = \mathcal{E}/R_2$ and $i_3 = \mathcal{E}/R_3$.
- Substituting these in the above:

$$i = i_1 + i_2 + i_3 = \frac{\mathcal{E}}{R_1} + \frac{\mathcal{E}}{R_2} + \frac{\mathcal{E}}{R_3}.$$

The equivalent resistance for parallel resistors can then be found from:

Multi-loop Circuits

Consider the circuit:

- Use loop rule LH loop: $\mathcal{E} = i_1 R_1 + i_2 R_2 + i_4 R_4$ (1).
- Now for RH loop: $i_2R_2 = i_3R_3$ (2).
- For outermost loop: $\mathcal{E} = i_1 R_1 + i_3 R_3 + i_4 R_4$ (3).

- Now use junction rule at point a: $i_1 = i_2 + i_3$ (4).
- And at point b:
 - $i_4 = i_2 + i_3$ (5).
- Now have 5 equations for 4 unknowns, solve for i_1 , i_2 , i_3 and i_4 .
- From (2) $i_2 = i_3 R_3 / R_2$ or $i_3 = i_2 R_2 / R_3$.

From (4)
$$i_1 = i_3 \frac{R_3}{R_2} + i_3 = i_3 \left(\frac{R_2 + R_3}{R_2} \right).$$

- From (4) and (5) $i_4 = i_1$, but also $i_4 = i_3(R_3/R_2 + 1)$.
- From (1) and above:

$$\mathcal{E} = i_1 R_1 + i_3 R_2 \frac{R_3}{R_2} + i_1 R_4.$$

Multi-loop Circuits

• Substituting for i₃ and rearranging:

$$\mathcal{E} = i_1 R_1 + i_1 \frac{R_2}{R_2 + R_3} \frac{R_2 R_3}{R_2} + i_1 R_4$$

= $i_1 R_1 + i_1 \frac{R_2}{R_2 + R_3} R_3 + i_1 R_4$
= $i_1 \left(\frac{R_1 (R_2 + R_3) + R_2 R_3 + R_4 (R_2 + R_3)}{R_2 + R_3} \right)$
 $\Rightarrow i_1 = \frac{\mathcal{E} (R_2 + R_3)}{R_1 R_2 + R_1 R_3 + R_2 R_3 + R_2 R_4 + R_3 R_4}$

- Strategy: use junction rule at every junction to give minimum number of unknown currents.
- Apply loop rule around same number of different loops as there are unknown currents.
- Solve equations for currents.

- For some circuits there may be better (simpler) strategies...
- E.g. here can find equivalent resistance due to R₂ and R₃ as these are in parallel:

$$\frac{1}{R_{23}} = \frac{1}{R_2} + \frac{1}{R_3} = \frac{R_2 + R_3}{R_2 R_3}.$$

Total equivalent resistance is then $R_{eq} = R_1 + R_{23} + R_4$

$$= R_1 + \frac{R_2 R_3}{R_2 + R_3} + R_4$$
$$= \frac{R_1 (R_2 + R_3) + R_2 R_3 + R_4 (R_2 + R_3)}{R_2 + R_3}$$

Hence total current is $i_1 = \frac{\mathcal{E}}{R_{eq}} = \frac{\mathcal{E}(R_2 + R_3)}{R_1 R_2 + R_1 R_3 + R_2 R_3 + R_2 R_4 + R_3 R_4}.$