Lecture 7

■ This lecture, we will look at:

- Capacitance.
- Calculating capacitances for simple shapes/configurations of electrodes.
- Adding capacitances in series and parallel.
- After this lecture, you should be able to answer the following questions:
- What is the capacitance of a sandwich consisting of 2 sheets of aluminium of dimensions $1 \times 1 \mathrm{~m}^{2}$ separated by $100 \mu \mathrm{~m}$?
- How large would the aluminium plates have to be for the capacitance of this device to be equal to that of the earth?

Relating Charge and Potential: Capacitance

- Parallel plate capacitor.
- Plates area A, separation d.

- Magnitude of E field due to charge +q on upper plate from Gauss' law:

$$
\begin{align*}
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}} & =\frac{\mathrm{q}_{\mathrm{enc}}}{\varepsilon_{0}} \\
\mathrm{EA} & =\frac{\mathrm{q}}{\varepsilon_{0}} \text { or } \mathrm{E}=\frac{\mathrm{q}}{\varepsilon_{0} \mathrm{~A}} \tag{7.1}
\end{align*}
$$

- Potential difference between plates:

$$
\mathrm{V}=-\int_{0}^{\mathrm{d}} \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}}=\mathrm{E} \int_{0}^{\mathrm{d}} \mathrm{ds}=\mathrm{Ed}
$$

- Using the previous expression for E :

$$
\mathrm{V}=\mathrm{q} \frac{\mathrm{~d}}{\mathrm{~A} \varepsilon_{0}}
$$

- Potential difference proportional to charge.
- We define the capacitance C so

V $=\mathrm{q} / \mathrm{C}$
[7.2]

- Hence, $\mathrm{C}=\mathrm{q} / \mathrm{V}$ and, for the parallel plate
capacitor, $\mathrm{C}=\frac{\mathrm{A} \varepsilon_{0}}{\mathrm{~d}}$.
- Units Farads (F).
- See also see that $\mathrm{E}=\mathrm{V} / \mathrm{d}$ (applies where E field is uniform).

Calculating Capacitance

- Capacitance of coaxial cylinders.
- End view of cylinders, length L, inner radius a, outer radius b.

- Gauss' law (cylindrical surface):

$$
\begin{aligned}
& \oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\mathrm{enc}}}{\varepsilon_{0}} \Rightarrow \mathrm{EA}=\frac{\mathrm{q}}{\varepsilon_{0}} \\
& \mathrm{E}=\frac{\mathrm{q}}{\varepsilon_{0} \mathrm{~A}}=\frac{\mathrm{q}}{\varepsilon_{0}(2 \pi \mathrm{rL})}=\frac{\mathrm{q}}{2 \pi \varepsilon_{0} \mathrm{Lr}} .
\end{aligned}
$$

- Now we can work out the potential difference between the cylinders:

$$
\begin{aligned}
\mathrm{V} & =-\int_{-}^{+} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \stackrel{-\mathrm{s}}{ }=\frac{-\mathrm{q}}{2 \pi \varepsilon_{0} \mathrm{~L}} \int_{\mathrm{b}}^{\mathrm{a}} \frac{\mathrm{dr}}{\mathrm{r}} \\
& =\frac{\mathrm{q}}{2 \pi \varepsilon_{0} \mathrm{~L}} \ln \left(\frac{\mathrm{~b}}{\mathrm{a}}\right) .
\end{aligned}
$$

- Using $\mathrm{C}=\mathrm{q} / \mathrm{V}$ we have:

$$
\mathrm{C}=2 \pi \varepsilon_{0} \frac{\mathrm{~L}}{\ln (\mathrm{~b} / \mathrm{a})} .
$$

- Important result, applies to coaxial cables!

Calculating Capacitance

- Spherical Capacitor.
- Two concentric spherical shells, inner radius a, outer radius b.

- Gauss' law (spherical surface):

$$
\oint \overrightarrow{\mathrm{E}} \cdot \mathrm{~d} \overrightarrow{\mathrm{~A}}=\frac{\mathrm{q}_{\text {enc }}}{\varepsilon_{0}} \Rightarrow \mathrm{EA}=\frac{\mathrm{q}}{\varepsilon_{0}}
$$

$$
\mathrm{E}=\frac{\mathrm{q}}{\varepsilon_{0} \mathrm{~A}}=\frac{\mathrm{q}}{\varepsilon_{0}\left(4 \pi \mathrm{r}^{2}\right)}=\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}} .
$$

- Now we can work out the potential difference between the cylinders:

$$
\begin{aligned}
\mathrm{V} & =-\int_{-}^{+} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \stackrel{-\mathrm{s}}{ }=\frac{-\mathrm{q}}{4 \pi \varepsilon_{0}} \int_{\mathrm{b}}^{\mathrm{a}} \frac{\mathrm{dr}}{\mathrm{r}^{2}} \\
& =\frac{\mathrm{q}}{4 \pi \varepsilon_{0}}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right)=\frac{\mathrm{q}}{4 \pi \varepsilon_{0}} \frac{\mathrm{~b}-\mathrm{a}}{\mathrm{ab}} .
\end{aligned}
$$

- Using $\mathrm{C}=\mathrm{q} / \mathrm{V}$ we have:

$$
\mathrm{C}=4 \pi \varepsilon_{0} \frac{\mathrm{ab}}{\mathrm{~b}-\mathrm{a}} .
$$

- Note always have expression of form capacitance $\sim \varepsilon_{0} \times$ (something with dimensions of length).
- Hence units of ε_{0} Farads per metre.

Calculating Capacitance

- Isolated sphere:

- Rewrite result for concentric spheres:

$$
\mathrm{C}=4 \pi \varepsilon_{0} \frac{\mathrm{a}}{1-\mathrm{a} / \mathrm{b}}
$$

- Let $\mathrm{b} \rightarrow \infty$: $\mathrm{C}=4 \pi \varepsilon_{0} \mathrm{a}$.
- Capacitance of the earth:

$$
\begin{aligned}
\mathrm{C} & =4 \pi \times 8.85 \times 10^{-12} \times 6.37 \times 10^{6} \\
& =7.08 \times 10^{-4} \mathrm{~F} .
\end{aligned}
$$

- Can now buy "ultra-capacitors" with $\mathrm{C} \sim 150 \mathrm{~F}$!

Capacitances in Parallel

- Capacitors used in electrical circuits.
- What is combined effect of capacitances in parallel?

- Look for C_{eq} which replaces capacitors above:

■ \quad Want $q=q_{1}+q_{2}+q_{3}$.

- Now $q_{1}=C_{1} V, q_{2}=C_{2} V$ and $q_{3}=C_{3} V$.
- Hence $\mathrm{q}=\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V}+\mathrm{C}_{3} \mathrm{~V}$.
- This gives:

$$
\mathrm{C}_{\mathrm{eq}}=\frac{\mathrm{q}}{\mathrm{~V}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} .
$$

- So capacitances in parallel add according to:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots \tag{7.4}
\end{equation*}
$$

Capacitances in Series

- Find equivalent capacitance for series circuit:

- Now $q_{1}=q_{2}=q_{3}=q$.
(The battery "pushes" electrons onto the bottom plate of C_{3}, which repel the electrons in the top plate of C_{3} onto the bottom plate of $\mathrm{C}_{2} \ldots$)
- The potential differences across each of the capacitors are:

$$
\mathrm{V}_{1}=\frac{\mathrm{q}}{\mathrm{C}_{1}}, \mathrm{~V}_{2}=\frac{\mathrm{q}}{\mathrm{C}_{2}} \text { and } \mathrm{V}_{3}=\frac{\mathrm{q}}{\mathrm{C}_{3}} .
$$

- But $V=V_{1}+V_{2}+V_{3}$ so we have:

$$
\mathrm{V}=\frac{\mathrm{q}}{\mathrm{C}_{1}}+\frac{\mathrm{q}}{\mathrm{C}_{2}}+\frac{\mathrm{q}}{\mathrm{C}_{2}}
$$

- Hence:

$$
C_{e q}=\frac{q}{V}=\frac{q}{q / C_{1}+q / C_{2}+q / C_{3}}
$$

- Rewriting we see:

$$
\begin{equation*}
\frac{1}{\mathrm{C}_{\mathrm{eq}}}=\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}+\frac{1}{\mathrm{C}_{3}}+\ldots \tag{7.5}
\end{equation*}
$$

