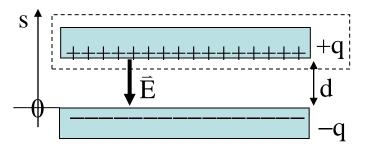
Lecture 7

- This lecture, we will look at:
 - Capacitance.
 - Calculating capacitances for simple shapes/configurations of electrodes.
 - Adding capacitances in series and parallel.

- After this lecture, you should be able to answer the following questions:
- What is the capacitance of a sandwich consisting of 2 sheets of aluminium of dimensions 1 × 1 m² separated by 100 µm?
- How large would the aluminium plates have to be for the capacitance of this device to be equal to that of the earth?

Relating Charge and Potential: Capacitance

- Parallel plate capacitor.
- Plates area A, separation d.



Magnitude of E field due to charge
 +q on upper plate from Gauss' law:

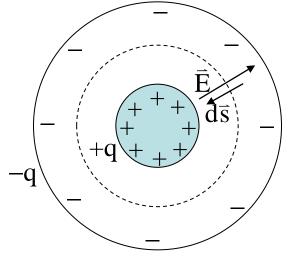
 $\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\epsilon_0}$

$$EA = \frac{q}{\varepsilon_0} \text{ or } E = \frac{q}{\varepsilon_0 A} \qquad [7.1]$$

- Potential difference between plates: $V = -\int_{0}^{d} \vec{E} \cdot d\vec{s} = E \int_{0}^{d} ds = Ed.$ Using the previous expression for E:
- Using the previous expression for E $V = q \frac{d}{A\epsilon_0}$.
- Potential difference proportional to charge.
- We define the capacitance C so V = q/C [7.2]
- Hence, C = q/V and, for the parallel plate capacitor, $C = \frac{A\varepsilon_0}{d}$.
- Units Farads (F).
- See also see that E = V/d [7.3] (applies where E field is uniform).

Calculating Capacitance

- Capacitance of coaxial cylinders.
- End view of cylinders, length L, inner radius a, outer radius b.



Gauss' law (cylindrical surface):

$$\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0} \Longrightarrow EA = \frac{q}{\varepsilon_0}$$
$$E = \frac{q}{\varepsilon_0 A} = \frac{q}{\varepsilon_0 (2\pi rL)} = \frac{q}{2\pi \varepsilon_0 Lr}$$

Now we can work out the potential difference between the cylinders:

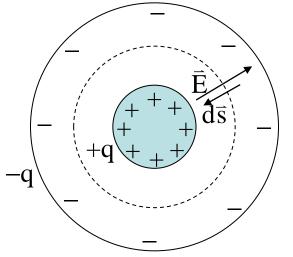
$$V = -\int_{-}^{+} \vec{E} \cdot d\vec{s} = \frac{-q}{2\pi\varepsilon_0 L} \int_{b}^{a} \frac{dr}{r}$$
$$= \frac{q}{2\pi\varepsilon_0 L} \ln\left(\frac{b}{a}\right).$$

Using
$$C = q/V$$
 we have:
 $C = 2\pi\varepsilon_0 \frac{L}{\ln(b/a)}$.

Important result, applies to coaxial cables!

Calculating Capacitance

- Spherical Capacitor.
- Two concentric spherical shells, inner radius a, outer radius b.



• Gauss' law (spherical surface):

$$\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0} \Longrightarrow EA = \frac{q}{\varepsilon_0}$$
$$E = \frac{q}{\varepsilon_0 A} = \frac{q}{\varepsilon_0 (4\pi r^2)} = \frac{q}{4\pi \varepsilon_0 r^2}.$$

Now we can work out the potential difference between the cylinders:

$$V = -\int_{-}^{+} \vec{E} \cdot d\vec{s} = \frac{-q}{4\pi\varepsilon_0} \int_{b}^{a} \frac{dr}{r^2}$$
$$= \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{a} - \frac{1}{b}\right) = \frac{q}{4\pi\varepsilon_0} \frac{b-a}{ab}$$

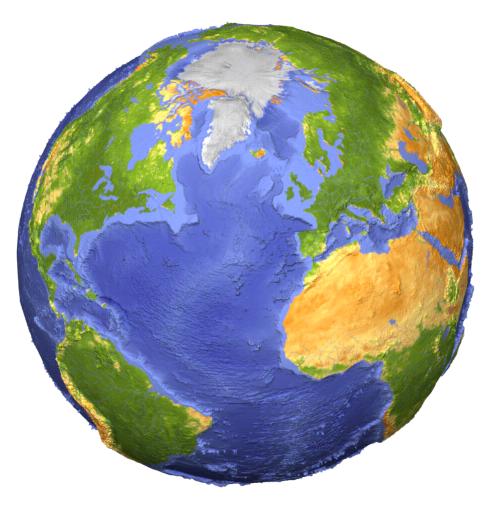
Using C=q/V we have:

$$C = 4\pi\varepsilon_0 \frac{ab}{b-a}.$$

- Note always have expression of form capacitance ~ $\varepsilon_0 \times$ (something with dimensions of length).
- Hence units of ε_0 Farads per metre.

Calculating Capacitance

Isolated sphere:



• Rewrite result for concentric spheres:

$$C = 4\pi\epsilon_0 \frac{a}{1-a/b}.$$

Let
$$b \to \infty$$
: $C = 4\pi \varepsilon_0 a$.

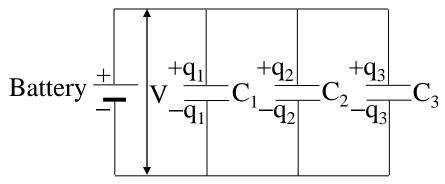
• Capacitance of the earth: $C = 4\pi \times 8.85 \times 10^{-12} \times 6.37 \times 10^{6}$

 $= 7.08 \times 10^{-4}$ F.

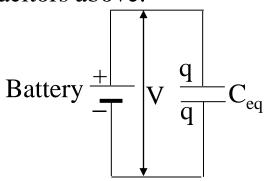
Can now buy "ultra-capacitors" with C ~ 150 F!

Capacitances in Parallel

- Capacitors used in electrical circuits.
- What is combined effect of capacitances in parallel?



Look for C_{eq} which replaces capacitors above:



- Want $q = q_1 + q_2 + q_3$.
- Now $q_1 = C_1 V$, $q_2 = C_2 V$ and $q_3 = C_3 V$.
- Hence $q = C_1 V + C_2 V + C_3 V$.
- This gives:

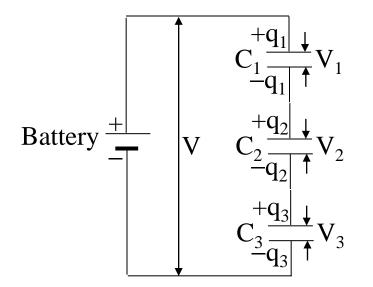
$$C_{eq} = \frac{q}{V} = C_1 + C_2 + C_3.$$

So capacitances in parallel add according to:

$$C_{eq} = C_1 + C_2 + C_3 + \dots$$
 [7.4]

Capacitances in Series

Find equivalent capacitance for series circuit:



Now $q_1 = q_2 = q_3 = q$. (The battery "pushes" electrons onto the bottom plate of C_3 , which repel the electrons in the top plate of C_3 onto the bottom plate of C_2 ...) The potential differences across each of the capacitors are:

$$V_1 = \frac{q}{C_1}, V_2 = \frac{q}{C_2} \text{ and } V_3 = \frac{q}{C_3}.$$

- But $V = V_1 + V_2 + V_3$ so we have: $V = \frac{q}{C_1} + \frac{q}{C_2} + \frac{q}{C_2}$.
- Hence:

$$C_{eq} = \frac{q}{V} = \frac{q}{q/C_1 + q/C_2 + q/C_3}$$

Rewriting we see:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$
 [7.5]