Lecture 5

■ This lecture, we will look at:

- Electric potential.
- Calculating the electric potential from the electric field.
- Electric potential due to a point charge.
- Illustrating the electric potential and an example from Particle Physics: the drift chamber.
- The potential due to a dipole.
- After this lecture, you should be able to answer the following questions:
- In what units is electric potential measured and how is electric potential related to potential energy?
- What are the formulae for the potential due to a point charge and a dipole?

Electric Potential

- A charge q_{0} in an electric field experiences a force $\stackrel{\rightharpoonup}{\mathrm{F}}=\mathrm{q}_{0} \stackrel{\rightharpoonup}{\mathrm{E}}$.
- If it moves under the influence of the force, or if it is moved against the influence of the force, work is done.
- Associate the electric potential energy, U, with the charge in the electric field.
- The change in electric PE between the initial configuration, i, and the final configuration, f, is given by:

$$
\Delta \mathrm{U}=\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\mathrm{W}
$$

- Here, W is the work done by the electric field on the charge (-W is the work done on the field in moving the charge).
- Define configuration with charge at infinite distance from source of field to have $\mathrm{U}_{\infty}=0$.
- Then, $\mathrm{U}=-\mathrm{W}$.
- Define electric potential, the electric potential energy per unit charge:

$$
\begin{equation*}
\mathrm{V}=\frac{\mathrm{U}}{\mathrm{q}_{0}} \tag{5.1}
\end{equation*}
$$

- Units J C ${ }^{-1}=$ Volts (V).
- The electric potential difference between points i and f is the difference in potential energy per unit charge between the two points:

$$
\Delta \mathrm{V}=\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}=\frac{\mathrm{U}_{\mathrm{f}}}{\mathrm{q}_{0}}-\frac{\mathrm{U}_{\mathrm{i}}}{\mathrm{q}_{0}}=\frac{\Delta \mathrm{U}}{\mathrm{q}_{0}}
$$

Calculating the Electric Potential from the Field

- Force on charge: $\overrightarrow{\mathrm{F}}=\mathrm{q}_{0} \overrightarrow{\mathrm{E}}$.
- Work done in moving charge a short distance $\mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}$ is $\mathrm{dW}=\overrightarrow{\mathrm{F}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}$.
- Defining $\mathrm{V}_{\mathrm{i}}=0$ at infinite distance:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{f}}=-\int_{\infty}^{\mathrm{f}} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}} \tag{5.2}
\end{equation*}
$$

- Difference in potential energy between configurations i and f:

$$
\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}=-\int_{\mathrm{i}}^{\mathrm{f}} \mathrm{dW}=-\int_{\mathrm{i}}^{\mathrm{f}} \stackrel{\rightharpoonup}{\mathrm{~F}} \cdot \mathrm{~d} \stackrel{\mathrm{~s}}{ }=-\int_{\mathrm{i}}^{\mathrm{f}} \mathrm{q}_{0} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}}
$$

- Hence difference in electric potential:

$$
\begin{aligned}
V_{f}-V_{i} & =\frac{U_{f}}{q_{0}}-\frac{U_{i}}{q_{0}} \\
& =\frac{-1}{q_{0}} \int_{i}^{f} q_{0} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}} \\
& =-\int_{\mathrm{i}}^{\mathrm{f}} \stackrel{\rightharpoonup}{\mathrm{E}} \cdot \mathrm{~d} \stackrel{\rightharpoonup}{\mathrm{~s}} .
\end{aligned}
$$

Electric Potential due to Point Charge

- Determine potential due to point charge.
- $\overrightarrow{\mathrm{E}} \cdot \mathrm{d} \stackrel{\rightharpoonup}{\mathrm{s}}=\mathrm{Edr} \cos \theta=\mathrm{Edr}$
- Hence:

$$
\begin{aligned}
V_{f} & =-\int_{\infty}^{\mathrm{R}} \mathrm{Edr} \\
& =-\int_{\mathrm{r}=\infty}^{\mathrm{r}=\mathrm{R}} \frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}^{2}} \mathrm{dr} \\
& =\frac{-\mathrm{q}}{4 \pi \varepsilon_{0}}\left[\frac{-1}{\mathrm{r}}\right]_{\infty}^{\mathrm{R}} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{R}} .
\end{aligned}
$$

- Again, we have used $\mathrm{V}_{\infty}=0$.
- Therefore:

$$
\begin{equation*}
\mathrm{V}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{q}}{\mathrm{r}} \tag{5.3}
\end{equation*}
$$

for any point at a distance r from the charge q.

Displaying the Electric Potential

- Potential due to a point charge:

- Electric potential indicated using equipotentials (c.f. contour lines on Ordnance Survey map!).

Electric Field and Associated Electric Potential

- Electric field due to 3 point charges:
- Principle of superposition for potentials:

$$
\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\ldots=\sum_{\mathrm{i}}^{\mathrm{N}} \mathrm{~V}_{\mathrm{i}}
$$

- Associated electric potential:

Electric Field and Associated Electric Potential

- Electric field due to 3 point charges:

(stlun `que) $К$

x (arb. units)

- Associated electric potential:

Electric Potential in a Drift Chamber

- Electric potential in drift chamber illustrated using equipotentials.
- Electric field always normal to equipotentials.
- Electrons produced in drift volume by high energy charged particle passing through gas in chamber.
- Electrons drift along electric field lines to anode wires (central potential wells) where they produce electrical signals.
■ Drift electric field $\sim 1 \mathrm{MV} / \mathrm{m}$.
- Using information on time taken for electrons to reach wires, reconstruct path of high energy charged particle.

H1 Drift

- Event display of H1 detector at the HERA electronproton collider showing the paths of charged particles and the energy deposited in the detector's calorimeters.

Potential due to Dipole

- Adding potentials due to positive and negative charges:

$$
\begin{aligned}
\mathrm{V} & =\mathrm{V}_{+}+\mathrm{V}_{-}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{q}}{\mathrm{r}_{+}}-\frac{\mathrm{q}}{\mathrm{r}_{-}}\right) \\
& =\frac{\mathrm{q}}{4 \pi \varepsilon_{0}}\left(\frac{\mathrm{r}_{-}-\mathrm{r}_{+}}{\mathrm{r}_{+} \mathrm{r}_{-}}\right) .
\end{aligned}
$$

- For $r \gg d: r_{+} r_{-} \approx r^{2}$,

$$
\mathrm{r}_{-}-\mathrm{r}_{+} \approx \mathrm{d} \cos \theta
$$

- Hence

$$
\begin{equation*}
\mathrm{V}=\frac{\mathrm{q}}{4 \pi \varepsilon_{0}} \frac{\mathrm{~d} \cos \theta}{\mathrm{r}^{2}} \tag{5.5}
\end{equation*}
$$

