Lecture 4

- This lecture, we will look at:
 - Gauss' Law and its equivalence to Coulomb's Law
 - Some applications of Gauss' Law
 - Gauss' Law and the Shell Theorem

- After this lecture, you should be able to answer the following questions:
- What is the charge enclosed by a surface through which the electric flux is 24 Nm²C⁻¹?
- Is this charge positive or negative?
- Calculate the electric field due to an infinite line of charge with linear density corresponding to one electron every nanometre.
- Use Gauss Law to prove the Shell Theorem.

Gauss' Law: Equivalence to Coulomb's Law

 Gauss' Law (in a vacuum) states: The flux of the electric field out of any closed surface equals the charge enclosed divided by ε₀:

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0} \qquad [4.1]$$

- We now show that Gauss' Law is equivalent to Coulomb's Law.
- Consider point charge q_{enc} at centre of spherical Gaussian surface.
- Angle between dA and E is always zero, hence:

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{A} = \oint_{S} E \, dA = \frac{q_{enc}}{\varepsilon_0}$$

E is constant over surface, so have: $\oint_{S} E dA = E \oint_{S} dA = E(4\pi r^{2}).$ Hence $E(4\pi r^{2}) = \frac{q_{enc}}{\varepsilon_{0}}$ or $E = \frac{1}{4\pi\varepsilon_{0}} \frac{q_{enc}}{r^{2}}$,

as required by Coulomb's Law.

Field Inside Charged Isolated Conductor

- The E field in a charged isolated conductor must be zero. (Why?)
- Use Gauss' Law to find out where the charge resides.
- Consider lump of copper, draw
 Gaussian surface just inside surface of copper.

Gauss' Law says that for any closed surface:

$$\oint_{S} \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\epsilon_0}.$$

- As E field zero, $q_{enc}/\epsilon_0 = 0$, hence no charge inside the Gaussian surface: it must all be on the surface of the copper.
- Repeat argument after having scooped out a cavity in the copper.
- No charge inside Gaussian surface, so no charge on cavity walls.

Field Outside Infinite Charged Conductor

Surface charge density σ (C m⁻²).

- Using Gauss' Law: $\oint_{S} \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0} = \frac{\sigma A}{\varepsilon_0}.$ For curved surfaces: \vec{E} and $d\vec{A}$ at $90^{\circ} \Rightarrow \vec{E} \cdot d\vec{A} = 0$. For RH end: \vec{E} and $d\vec{A}$ parallel $\Rightarrow \vec{E} \cdot d\vec{A} = E dA$. E const, so $\int E dA = EA$. For LH end, $\vec{E} = 0$. Hence: $EA = \frac{\sigma A}{\Rightarrow} \Rightarrow E = \frac{\sigma}{\Rightarrow}$ [4.2]
 - Field perpendicular to surface, directed out of conductor.

Field due to Infinite Charged Sheet

Surface charge density σ .

- Analysis similar to that for field outside infinite charged conductor.
- Difference is that there is a field present at the LH end of the Gaussian surface.
- Leads to result that field strength is:

$$E = \frac{1}{2} \frac{\sigma}{\varepsilon_0} \qquad [4.3]$$

Field is directed perpendicular to sheet, towards both left and right.

Field due to Infinite Line of Charge

Linear charge density λ (C m⁻¹).

- Applying Gauss' Law: $\oint_{S} \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0} = \frac{\lambda h}{\varepsilon_0}.$
- Symmetry implies E field directed radially outwards.
- No contribution from cylinder ends (E field perpendicular to area vectors).
- E constant at given radius, so $\oint_{S} \vec{E} \cdot d\vec{A} = E \int_{\text{Sides}} dA = E(2\pi rh).$ Hence: $E(2\pi rh) = \frac{\lambda h}{\varepsilon_0}$ $\Rightarrow E = \frac{\lambda}{2\pi r\varepsilon_0}$ [4.4]

Gauss' Law and the Shell Theorem

- What does the Shell Theorem state?
- Consider charge distributed uniformly over a spherical shell:

- Symmetry implies E field at each of Gaussian surfaces has constant magnitude and is radially directed.
- Consider surface outside shell: $E \oint dA = \frac{q}{dA}$

$$\Rightarrow E(4\pi r^2) = \frac{q}{\varepsilon_0} \text{ or } E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}.$$

For surface inside shell: $E \oint_{S_{in}} dA = 0$ $\Rightarrow E(4\pi r^2) = 0 \text{ or } E = 0.$

Sphere of Charge

Consider uniform sphere of charge:

Total charge on sphere q.

• Outside sphere, analysis as for shell: $E \oint_{S_{out}} dA = \frac{q}{\varepsilon_0} \Longrightarrow E(4\pi r^2) = \frac{q}{\varepsilon_0} \text{ or }:$ $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$ [4.5] Inside sphere:

That is, at a radius r inside the sphere, the field is the same as that due to a point charge at the centre of the sphere, with magnitude of all the charge within the radius r.