
Lecture 3

■ This lecture, we will look at:

♦ Torque on dipole in electric field: 

the vector product

♦ Potential energy of dipole in 

electric field: the scalar product

♦ Electric field due to a continuous 

charge distribution

♦ Flux of an electric field

■ After this lecture, you should be able 

to answer the following questions:

■ The dipole moment of a water 

molecule is 6.2 × 10-30 Cm. What is 

the maximum torque on a water 

molecule in an electric field of 

strength 1000 NC-1?

■ Derive the electric field on the 

symmetry axis of a circular ring of 

radius R carrying a uniformly 

distributed charge of magnitude q.

■ What is “electric flux” and in what 

units is it measured?  



Torque on Dipole in 

Electric Field

■ Can represent torque using vectors.

■ Torque has magnitude

and direction given by “right-hand 

screw” rule: torque is normal to 

with sense of screw turned 

from direction of 

■ In terms of Cartesian coordinates:

■ Can associate potential energy with 

dipole in (uniform) E field.

■ Choose zero of potential energy to be 

when 

■ Can generalise this to vector equation

■ In Cartesian coordinates:  
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Potential Energy of 

Dipole in Electric Field



Electric Field due to Continuous Charge Distribution

■ Continuous charge 

distribution can be line, 

ring, sheet, volume...

■ Divide distribution into 

elemental charges dq.

■ Calculate field       due to 

dq using symmetry to 

simplify the problem 

where possible.

■ Integrate over charge 

distribution.

■ Consider example – field 

due to a ring of charge, 

linear charge density l.

■ Element ds, charge dq = lds, 

produces field       at P:

■ Horizontal components 

cancel (symmetry) and...

■

so

■ Total field:
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Electric Field due to Continuous Charge Distribution

■ Hence

■ Now l is charge per unit length of 

ring, so l(2R) = q, the total charge 

on the ring.

■ We can re-write the expression for 

the field due to a ring of charge:

■ Similar calculations can be done for 

other simple charge distributions 

(continuous sheet or sphere of 

charge, line of charge...).
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■ Situations in which there is less 

symmetry may well have to be solved 

numerically using a computer. 



 

Flux of an Electric Field

■ Can think of electric field lines as 

“flowing” through space.

■ The flux, F, of the E field is the 

number of lines through an area A 

(recall density of lines is proportional 

to field strength).

■ Must take account of fact that area 

may not be perpendicular to field.

■ Hence, define:

F = EA cos  [3.3]

where  is the angle between

■ In terms of vectors: 

E and A.
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

Flux of an Electric Field

■ If electric field varies, 

consider elements of 

area:

■ Then get total flux 

through a surface by 

adding up all the 

elements:

■ Becomes integral as 

elements taken to be 

infinitely small:

■ For a closed surface:
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