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1 Sympy
We will have a quick look at the Symbolic Python or sympy library, which is described in full here.
This library provides Python tools for solving equations, differentiating and integrating functions,
expanding functions as series and other symbolic manipulations.

1.1 Sympy introduction - defining equations
In order to use sympy, we have to import it in the same way we import numpy. Let’s do that and
then look at a first example.

[1]: import sympy as sp
#
x, a, b, c = sp.symbols('x a b c')
quadEq = sp.Eq(a*x**2 + b*x + c, 0)
print("The quadratic equation is",quadEq)

The quadratic equation is Eq(a*x**2 + b*x + c, 0)

As we can see above, the first thing we have done is defined the symbols we want to use. The
statement:

x, a, b, c = sp.symbols('x a b c')

tells sympy that x, a, b and c are to be treated as algebraic symbols. (These don’t need to be
single letters, for example, we could define theta = sp.symbols('theta').)

Our next step was to define the quadratic equation ax2 + bx + c = 0. To do this, we can’t write
a*x**2 + b*x + c = 0, because Python uses the = character to assign values to variables (e.g. y
= 18.0 or y = np.cos(1.3)). We also can’t define the quadratic equation by writing a*x**2 +
b*x + c == 0, because == tests whether what’s to its left is identical to whatever’s to its right and
returns the value True or False accordingly. Hence the syntax:

sp.Eq(a*x**2 + b*x + c, 0)

is used to indicate that the left hand side (LHS) a*x**2 + b*x + c is equal to the right hand side
(RHS) 0.

1.2 Solving equations
Having defined an equation, can we solve it?
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[2]: import sympy as sp
quadSol = sp.solve(quadEq, x)
print("Solution of",quadEq,"is x =",quadSol)

Solution of Eq(a*x**2 + b*x + c, 0) is x = [(-b + sqrt(-4*a*c + b**2))/(2*a),
-(b + sqrt(-4*a*c + b**2))/(2*a)]

The sp.solve statement solves the equation we have set up (sp.solves’s first argument) for the
variable indicated (sp.solve’s second argument), and we see that it has returned the expected
solutions for the quadratic equation:

x =
−b+

√
b2 − 4ac

2a

and
x =

−b−
√
b2 − 4ac

2a
.

We can find out from sympy how many solutions there are and get at the solutions separately as
follows.

[3]: nQuadSols = len(quadSol)
for n in range(0, nQuadSols):

print("Solution",n,"is",quadSol[n])

Solution 0 is (-b + sqrt(-4*a*c + b**2))/(2*a)
Solution 1 is -(b + sqrt(-4*a*c + b**2))/(2*a)

Note that in order to use sp.solve, the RHS of the equation has to be zero. For example, if we were
given the equation ax3 + bx2 = cx to solve, we would first have to rewrite it as ax3 + bx2 − cx = 0,
then we could determine the solution as follows.

[4]: cubicSol = sp.solve(a*x**3 + b*x**2 - c*x, x)
nCubicSols = len(cubicSol)
for n in range(0, nCubicSols):

print("Solution",n,"is",cubicSol[n])

Solution 0 is 0
Solution 1 is -b/(2*a) - sqrt(4*a*c + b**2)/(2*a)
Solution 2 is -b/(2*a) + sqrt(4*a*c + b**2)/(2*a)

Use sympy to solve the equation 4 sin θ + 5 cos θ = 1.

[5]: theta = sp.symbols('theta')
sinEq = sp.Eq(4*sp.sin(theta) + 5*sp.cos(theta) - 1, 0)
sinSol = sp.solve(sinEq, theta)
nSinSols = len(sinSol)
for n in range(0, nSinSols):

print("Solution",n,"is",sinSol[n])
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Solution 0 is 2*atan(2/3 - sqrt(10)/3)
Solution 1 is 2*atan(2/3 + sqrt(10)/3)

Note, as we have done above (e.g. quadSol = sp.solve(quadEq, x)) we can assign a symbolic
expression to a variable. Here is another example.

[6]: y = a*x**2 + b*x + c
print("Solution of",y,"= 0 is x =",sp.solve(y, x))

Solution of a*x**2 + b*x + c = 0 is x = [(-b + sqrt(-4*a*c + b**2))/(2*a), -(b +
sqrt(-4*a*c + b**2))/(2*a)]

This does not define a function y(x), it just assigns the symbolic expression a*x**2 + b*x + c to
the variable y. The following expression will therefore produce an error message.

[7]: print("y(2) =",y(2))

␣
↪→---------------------------------------------------------------------------

TypeError Traceback (most recent call␣
↪→last)

<ipython-input-7-5eb93071928a> in <module>
----> 1 print("y(2) =",y(2))

TypeError: 'Add' object is not callable

If we want to define a symbolic function, we can use the normal Python syntax for creating functions
(having defined the relevant symbols):

[8]: x, a, b, c = sp.symbols('x a b c')
#
def quad(x):

f = a*x**2 + b*x + c
return f

#
print("Solution of quad(x) = 0 is x =",sp.solve(quad(x), x))

Solution of quad(x) = 0 is x = [(-b + sqrt(-4*a*c + b**2))/(2*a), -(b +
sqrt(-4*a*c + b**2))/(2*a)]

We can now use this Python function to evaluate quad(x) for a specific value of x:

[9]: print("quad(2) =",quad(2))

quad(2) = 4*a + 2*b + c
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Note that we get a symbolic answer, as a, b and c are symbols. We can check this, e.g. for a, by
looking at the type of a:

[10]: print("Type of a is",type(a))

Type of a is <class 'sympy.core.symbol.Symbol'>

If we assign numerical values to a, b and c, quad(2) will return numbers for the solutions of the
equation:

[11]: a = 2
b = 3
c = 1
print("quad(2) =",quad(2))
print("Solution of quad(x) = 0 is x =",sp.solve(quad(x), x))

quad(2) = 15
Solution of quad(x) = 0 is x = [-1, -1/2]

The disadvantage of giving a, b and c specific values in this way is that we can no longer use them
as symbolic objects. E.g. if we re-check the type of a, we will find that it is now an integer.

[12]: print("Type of a after assigning integer value is",type(a))

Type of a after assigning integer value is <class 'int'>

There is an alternative method. Let’s first turn a, b and c back into symbols and check that they
are behaving as we want them to.

[13]: a, b, c = sp.symbols('a b c')
print("Type of a after setting as symbol is",type(a))
print("quad(2) =",quad(2))

Type of a after setting as symbol is <class 'sympy.core.symbol.Symbol'>
quad(2) = 4*a + 2*b + c

Now substitute the numerical value 3 for a using subs(a, 3). We can check that a is given the
value 3 when we do this, and that a is still a symbol, as follows:

[14]: print("quad(x).subs(a, 3) =",quad(x).subs(a, 3))
print("quad(2).subs(a, 3) =",quad(2).subs(a, 3))
print("Type of a is",type(a))

quad(x).subs(a, 3) = b*x + c + 3*x**2
quad(2).subs(a, 3) = 2*b + c + 12
Type of a is <class 'sympy.core.symbol.Symbol'>

We can substitute more than one numerical value into an expression:

[15]: print("quad(x).subs(a, 3).subs(b = -2.4).subs(c = 17/3) =",quad(x).subs(a, 3).
↪→subs(b, -2.4).subs(c, 17/3))
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print("quad(2).subs(a, 3).subs(b = -2.4).subs(c = 17/3) =",quad(2).subs(a, 3).
↪→subs(b, -2.4).subs(c, 17/3))

quad(x).subs(a, 3).subs(b = -2.4).subs(c = 17/3) = 3*x**2 - 2.4*x +
5.66666666666667
quad(2).subs(a, 3).subs(b = -2.4).subs(c = 17/3) = 12.8666666666667

We can also substitute another symbolic value:

[16]: print("quad(x).subs(a, x) =",quad(x).subs(a, x))
print("quad(x).subs(a, y) =",quad(x).subs(a, y))

quad(x).subs(a, x) = b*x + c + x**3
quad(x).subs(a, y) = b*x + c + x**2*(a*x**2 + b*x + c)

1.3 Solveset and the future of solve
In time, the authors of sympy hope to replace sp.solve with a new routine, sp.solveset(see here
for a description), which is used in a similar but not quite identical way. For the moment sp.solve
can cope with more types of equations than sp.solveset. An example using sp.solveset is shown
below. Notice that it removes the restriction that the equation must be presented with the RHS
being zero.

[17]: z, p, q, r = sp.symbols('z p q r')
newQuadEq = sp.Eq(p*z**2 + q*z, -r)
print("This quadratic equation is",newQuadEq)
#
newQuadSol = sp.solveset(newQuadEq, z)
print("Its solution is",newQuadSol)

This quadratic equation is Eq(p*z**2 + q*z, -r)
Its solution is {-q/(2*p) - sqrt(-4*p*r + q**2)/(2*p), -q/(2*p) + sqrt(-4*p*r +
q**2)/(2*p)}

The curly brackets indicate that the solutions are not given as a list as with sp.solve, but as (for
us) a new data type, a set. This allows sp.solveset to deal with situations where there is an
infinite number of solutions, but means these have to be accessed in a slightly different way. If the
number of solutions is finite, the following works.

[18]: nSol = 0
for sol in newQuadSol:

print("Solution",nSol,"is",sol)
nSol += 1

Solution 0 is -q/(2*p) - sqrt(-4*p*r + q**2)/(2*p)
Solution 1 is -q/(2*p) + sqrt(-4*p*r + q**2)/(2*p)

1.4 Fractions
Fractions (rational numbers) can be entered as below.
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[19]: alpha = sp.Rational(1, 137)
print("alpha =",alpha)

alpha = 1/137

They can be added, subtracted, multiplied and divided.

[20]: half = sp.Rational(1, 2)
quarter = sp.Rational(1, 4)
print("half + quarter =",half + quarter)
print("half - quarter =",half - quarter)
print("half*quarter =",half*quarter)
print("half/quarter =",half/quarter)

half + quarter = 3/4
half - quarter = 1/4
half*quarter = 1/8
half/quarter = 2

Of course, you don’t have to assign variable names to fractions before manipulating them, and
fractions can be turned into floats.

[21]: ans = sp.Rational(3, 137) - sp.Rational(17, 13)
print("ans =",ans)
print("ans as float =",float(ans))

ans = -2290/1781
ans as float = -1.2857944974733295

1.5 Differentiation
Sympy provides a routine for differentiating. You must give it the expression you want to differ-
entiate and the variable with respect to which the differentiation should be peformed, as shown
below.

[22]: print("The differential of a*x**5 + b*x**2 + c/x**3 w.r.t. x is",sp.diff(a*x**5␣
↪→+ b*x**2 + c/x**3, x))

print("The differential of quad(x) w.r.t. x is",sp.diff(quad(x), x))

The differential of a*x**5 + b*x**2 + c/x**3 w.r.t. x is 5*a*x**4 + 2*b*x -
3*c/x**4
The differential of quad(x) w.r.t. x is 2*a*x + b

The second (and higher) differentials can also be calculated (in several ways).

[23]: print("Second differential is",sp.diff(sp.diff(a*x**5 + b*x**2 + c/x**3, x),x))
print("Second differential is",sp.diff(a*x**5 + b*x**2 + c/x**3, x, x))
print("Second differential is",sp.diff(a*x**5 + b*x**2 + c/x**3, x, 2))

Second differential is 20*a*x**3 + 2*b + 12*c/x**5
Second differential is 2*(10*a*x**3 + b + 6*c/x**5)

6



Second differential is 2*(10*a*x**3 + b + 6*c/x**5)

Notice the output from the first of these methods is written differently to that from the latter two,
but we can check they are the same by subtracting them and using sp.simplify to simplify the
result!

[24]: sp.simplify(sp.diff(sp.diff(a*x**5 + b*x**2 + c/x**3, x),x) - sp.diff(a*x**5 +␣
↪→b*x**2 + c/x**3, x, 2))

[24]:
0

Find the first derivative w.r.t x of the function:

s(x) = A

(
tanh

[
x− x0

L
+

w

2L

]
− tanh

[
x− x0

R
− w

2R

])
.

Using the values A = 2.0, x0 = 0.5, L = 1.1, R = 0.5 and w = 0.4, plot the function
and its derivative in the range −2 < x < 3 using numpy and matplotlib.

Hint, you can copy the output from the differentiation and paste it into your
code for doing the plotting. It will need some editing, but not much! This can
save you a lot of time and helps avoid typos.

[25]: A, x, x0, L, R, w = sp.symbols('A x x0 L R w')
def s(x):

s = A*(sp.tanh((x - x0)/L + w/(2*L)) - sp.tanh((x-x0)/R - w/(2*R)))
return s

#
s_ = sp.diff(s(x), x)
print(s_)

A*(-(1 - tanh(-w/(2*R) + (x - x0)/R)**2)/R + (1 - tanh(w/(2*L) + (x -
x0)/L)**2)/L)

[26]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#
def func(x):

f = A*(np.tanh((x - x0)/L + w/(2*L)) - np.tanh((x-x0)/R - w/(2*R)))
return f

#
def dfunc(x):

f = A*(-(-np.tanh(-w/(2*R) + (x - x0)/R)**2 + 1)/R + (-np.tanh(w/(2*L) + (x␣
↪→- x0)/L)**2 + 1)/L)

return f
#
A = 2.0
x0 = 0.5
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L = 1.1
R = 0.5
w = 0.4
#
xArr = np.linspace(-2, 3, 100)
yArr = func(xArr)
dyArr = dfunc(xArr)
#
plt.figure(figsize = (6, 4))
plt.title("Function and its derivatives")
plt.xlabel("x")
plt.ylabel("y")
plt.plot(xArr, yArr, color = 'b', label = "function")
plt.plot(xArr, dyArr, color = 'r', label = "first deriv")
plt.grid(color = 'g')
plt.legend()
plt.show()

1.6 Integration
The syntax for performing indefinite integration (i.e. without limits) is
similar to that for differentiation. Note that sympy does not add a constant
of integration to indefinite integrals, you have to think about what you need to
do about these yourself!
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[27]: intQuad = sp.integrate(quad(x), x)
print("Integral of",quad(x),"w.r.t. x is",intQuad)

Integral of a*x**2 + b*x + c w.r.t. x is a*x**3/3 + b*x**2/2 + c*x

If we want to evaluate this integral with particular values of a, b, c and x we
must sp.subs all of these, including x, as intQuad is not a function.

[28]: print("Integral of",quad(x),"with a = 1, b = 2, c = -1 and x = 4 is",intQuad.
↪→subs(a, 1).subs(b, 2).subs(c, -1).subs(x, 4))

Integral of a*x**2 + b*x + c with a = 1, b = 2, c = -1 and x = 4 is 100/3

If you want to do a definite integral, give sp.integrate a tuple containing the
variable and the range over which the integration should take place.

[29]: intQuadLim = sp.integrate(quad(x), (x, -1, 2))
print("Integral of",quad(x),"w.r.t. x over range -1 to 2 is",intQuadLim)

Integral of a*x**2 + b*x + c w.r.t. x over range -1 to 2 is 3*a + 3*b/2 + 3*c

Numerical values of a, b, and c can be provided as previously described. The
substitution can be made before or after the integration.

[30]: intQuadLim1 = sp.integrate(quad(x).subs(a, 1).subs(b, 2).subs(c, -1), (x, -1,␣
↪→2))

intQuadLim2 = sp.integrate(quad(x), (x, -1, 2)).subs(a, 1).subs(b, 2).subs(c,␣
↪→-1)

print("Integral of",quad(x),"w.r.t. x over range -2 to 2 is",intQuadLim1)
print("Integral of",quad(x),"w.r.t. x over range -2 to 2 is",intQuadLim2)

Integral of a*x**2 + b*x + c w.r.t. x over range -2 to 2 is 3
Integral of a*x**2 + b*x + c w.r.t. x over range -2 to 2 is 3

1.7 Plotting with sympy
We can demonstrate the plotting capabilities of sympy by plotting quad and its
integral. Sympy does this via an interface to matplotlib, but the syntax for
making the plots is a little different to that we have seen so far. Here are the
two plots as two separate figures.

[31]: import matplotlib.pyplot as plt
%matplotlib inline
#
sp.plot(quad(x).subs(a, 1).subs(b, 2).subs(c, -1),(x, -5, 3), line_color =␣
↪→'blue', title = "Function")

sp.plot(intQuad.subs(a, 1).subs(b, 2).subs(c, -1).subs(x, x),(x, -5, 3),␣
↪→line_color = 'red', title = "Integral")

plt.show()
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And here they are plotted together. (Getting two different line colours is a
little convoluted!)

[32]: thisPlot = sp.plot(quad(x).subs(a, 1).subs(b, 2).subs(c, -1),
intQuad.subs(a, 1).subs(b, 2).subs(c, -1).subs(x, x),
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(x, -5, 3), show = False, title = "Function and integral")
thisPlot[0].line_color = 'blue'
thisPlot[1].line_color = 'red'
thisPlot.show()

1.8 Solving differential equations
A range of ordinary differential equations can be solved with sympy using dsolve.
We will look at the equation:

dg

dt
= exp(−t)− g,

with the inital condition g(0) = 1. In order to set up this, or any, differential
equation in sympy, we first have to define the function we want to solve for,
in this case g. As we don't know what this will be until we have solved the
equation, we can't write down an explicit form for it. Sympy allows us to define
a general function using sp.Function as below. When defined like this, g can be
a function of anything and can have any functional form. We have to make sure we
refer to it consistently; in this example, we must refer to it explicitly as a
function of t.

[33]: t = sp.symbols("t")
g = sp.Function("g")
diffEq = sp.Eq(g(t).diff(t), sp.exp(-t) - g(t))
solDiffEq = sp.dsolve(diffEq, g(t))
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print("Solution of differential equation is",solDiffEq)

Solution of differential equation is Eq(g(t), (C1 + t)*exp(-t))

Notice how we have defined the derivative w.r.t. t in the above: g(t).diff(t).

An alternative method of solving the equation requires that we rewrite it so that
the RHS is zero:

dg

dt
− exp(−t) + g = 0.

We can then solve it as below. Note also the alternative way of defining d
dtg(t).

[34]: g_ = sp.Derivative(g(t), t)
print("Solution of differential equation is",sp.dsolve(g_ - sp.exp(-t) + g(t),␣
↪→g(t)))

Solution of differential equation is Eq(g(t), (C1 + t)*exp(-t))

Which ever method we choose, we now have to find the arbitrary constant C1. This
can be done using symbolic methods as below. Note that the statement Eq(1, C1) is
an equation that tells us 1 = C1, as described above!

[35]: equationForC1 = solDiffEq.subs([(t, 0), (g(0), 1)])
print("Equation for C1 is",equationForC1)

Equation for C1 is Eq(1, C1)

Solve symbolically the equation that describes radioactive decay,

dN

dt
= −N

τ
,

using the fact that at time t = 0 the number of nuclei is N0.

(This equation describes the situation in which the number of decays per unit
time in a sample is proportional to the number of remaining nuclei, N. Hence the
rate of change in N with time, dN

dt is proportional to −N.)

[36]: t, tau, N0 = sp.symbols('t tau N0')
N = sp.Function("N")
decayEq = sp.Eq(N(t).diff(t), -N(t)/tau)
solDecayEq = sp.dsolve(decayEq, N(t))
print("Solution of decay equation is",solDecayEq)
equationForC1 = solDecayEq.subs([(t, 0), (N(0), N0)])
print("Equation for C1 is",equationForC1)

Solution of decay equation is Eq(N(t), C1*exp(-t/tau))
Equation for C1 is Eq(N0, C1)

Hence result is N(t) = N0 exp
[
− t

τ

]
, as expected!
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1.9 Series
Sympy knows about Taylor series. To use them, we must specify the function we
want to express as a series and the variable in which we want the expansion to
be done. We can also specify the point around which the expansion should be
made (π/4 in the example below) and the maximum power in the expansion (the 3
below means we get terms up to the power 2). Look at the documentation for more
information! The example is the determination of the Taylor expansion for the
sine function.

[37]: sinSeries = sp.sin(x).series(x, sp.pi/4, 3)
print("First terms in Taylor series for sine function about pi/4 are",sinSeries)

First terms in Taylor series for sine function about pi/4 are sqrt(2)/2 +
sqrt(2)*(x - pi/4)/2 - sqrt(2)*(x - pi/4)**2/4 + O((x - pi/4)**3, (x, pi/4))

Using numpy and matplotlib, plot a graph showing a cosine function in the θ range
0...π. Superimpose on this a plot of the sum of the Taylor series for the cosine
up to and including the θ3 term, expanded about π/2.

[38]: # <-- Demo -->
#
cosSeries = sp.cos(x).series(x, sp.pi/2, 5)
print("cosSeries\n",cosSeries)

cosSeries
pi/2 + (x - pi/2)**3/6 - x + O((x - pi/2)**5, (x, pi/2))

[39]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#
def cosTaylor(Q):

c = np.pi/2 + (Q - np.pi/2)**3/6 - Q
return c

#
thetaArr = np.linspace(0, np.pi, 100)
plt.figure(figsize = (5, 4))
plt.title("Cos and Taylor series for cos")
plt.xlabel("theta")
plt.ylabel("cos theta")
plt.plot(thetaArr, np.cos(thetaArr), color = 'b', label = 'cosine')
plt.plot(thetaArr, cosTaylor(thetaArr), color = 'r', linestyle = '--', label =␣
↪→"Taylor series")

plt.legend()
plt.grid(color = 'g')
plt.show()
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1.10 Matrices and linear equations
This section is here for information only as you have yet to look at matrices in
maths!

Matrices can be defined and inverted as shown here.

[40]: A = sp.Matrix(([3, 7], [4, -2]))
invA = A.inv()
AinvA = A*invA
invAA = invA*A
print("This is the matrix A\n",A)
print("Its inverse is\n",invA)
print("A multplied by its inverse is\n",AinvA)
print("The inverse of A multplied y A is\n",invAA)
print("As expected, both multiplications give the unit matrix!")

This is the matrix A
Matrix([[3, 7], [4, -2]])
Its inverse is
Matrix([[1/17, 7/34], [2/17, -3/34]])
A multplied by its inverse is
Matrix([[1, 0], [0, 1]])
The inverse of A multplied y A is
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Matrix([[1, 0], [0, 1]])
As expected, both multiplications give the unit matrix!

Systems of linear equations can be defined and solved using matrices. For
example, consider the equations:

3x+ 4y = 7

x− 3y = 2.

These can be written: (
3 4
1 −3

)(
x
y

)
=

(
7
2

)

Defining M =

(
3 4
1 −3

)
, x⃗ =

(
x
y

)
and c⃗ =

(
7
2

)
, we have Mx⃗ = c⃗. The solution

is obtained by multiplying through by M−1, the inverse of M, and using the fact
that M−1M = I, the unit matrix:

M−1Mx⃗ = M−1c⃗

x⃗ = M−1c⃗.

Using sympy, this can be done as follows. (Note we start by redefining x and y so
we do not use the assignments above!)

[41]: x, y = sp.symbols('x y')
M = sp.Matrix(([3, 4], [1, -3]))
X = sp.Matrix((x, y))
C = sp.Matrix((7, 2))
invM = M.inv()
solVect = invM*C
print("Equations to solve",M*X,'=',C)
print("Solution is",X,"=",solVect)

Equations to solve Matrix([[3*x + 4*y], [x - 3*y]]) = Matrix([[7], [2]])
Solution is Matrix([[x], [y]]) = Matrix([[29/13], [1/13]])

The solution is therefore:

(
x
y

)
=

(
29
13
1
13

)
,

or
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x =
29

13

y =
1

13
.

This system of equations can of course easily be solved by hand, but sympy will
cope with systems of equations that would cause even Bradley Cheal to despair!

1.11 Odds and ends
You can print equations from sympy in LaTeX format, so they can be copied and
pasted into Markdown cells or documents. An example is shown below.

[ ]: print(sp.latex(sp.Integral(sp.sqrt(1/x), x)))

You can also get sympy to write its results to the screen in a more legible
format by giving the command sp.init_printing(). This looks on your computer
to find the most attractive printing mode available (e.g. LaTeX if you have it
installed) and uses that. The disadvantage of using this mode is that you can't
copy and paste the output into code cells.

[ ]: import sympy as sp
sp.init_printing()
#
sp.solve(a*x**2 + b*x + c, x)

If you want to turn ``posh printing'' off, you can do:

[44]: sp.init_printing(pretty_print = False)
#
sp.solve(a*x**2 + b*x + c, x)

[44]: [(-b + sqrt(-4*a*c + b**2))/(2*a), -(b + sqrt(-4*a*c + b**2))/(2*a)]
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