
LectNotebook08

December 2, 2020

1 Lecture 8
-Introduction: »
-Projectile motion with no air resistance: »
-Projectile motion with air resistance: »
-Projectile motion: behaviour of velocity with time: »
-Putting multiple plots in one figure: »
-Summary: »

1.1 Introduction
This week we shall use Euler’s method and some of the programming techniques we have developed
to look at a physics problem that cannot be solved analytically: projectile motion with air resistance.
We shall then look at some more plotting routines.

1.2 Projectile motion with no air resistance
We know we can work out the path of a projectile algebraically in the absence of air resistance. We
use Newton’s Second Law:

F⃗ = ma⃗

= m
d

dt
v⃗

= m
d2

dt2
r⃗,

where, F⃗ is the force, m the mass, v⃗ velocity, r⃗ the position and t the time. Separating the motion
into its horizontal (x) and vertical (y) components, for the former we have:

d2x

dt2
= 0,

⇒ dx

dt
= ux,

⇒ x = uxt+ x0.

1

Here, ux is the initial velocity of the projectile in the x direction and x0 its initial position. Taking
the origin of the x axis to be the position from which the projectile is launched at t = 0 gives
x0 = 0.

In the vertical direction, setting the vertical force to be mg, with g = −9.81ms−2, we have:

m
d2y

dt2
= mg,

⇒ d2y

dt2
= g,

⇒ dy

dt
= gt+ uy,

⇒ y =
1

2
gt2 + uyt+ y0,

where uy is the initial vertical velocity and we have assumed the height from which the projectile
is launched is y = y0.

Setting y0 = 0 for simplicity, the times at which the projectile is at ground level can be found from:

y = 0

⇒ 1

2
gt2 + uyt = 0

⇒ t

(
gt

2
+ uy

)
= 0

⇒ t = 0 or − 2uy
g

.

Taking ux = 30ms−1 and uy = 40ms−1, the trajectory of the projectile can be plotted using the
equations for the vertical and horizontal motion in terms of the time.

[4]: import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#
ux = 30 # m/s
uy = 40 # m/s
g = -9.81 # m/s**2
tMax = -2*uy/g # s
nSteps = 100
tArr = np.linspace(0.0, tMax, nSteps)
#
xArr = ux*tArr
yArr = 0.5*g*tArr**2 + uy*tArr
#
plt.figure(figsize = (6, 5))

2

plt.title("Projectile motion, no air resistance")
plt.xlabel("x (m)")
plt.ylabel("y (m)")
plt.plot(xArr, yArr, linestyle = '-', color = 'b')
plt.grid(color = 'g')
plt.show()

1.3 Projectile motion with air resistance
What happens of we include the effect of air resistance? In addition to the gravitational force, the
projectile then experiences a drag force which acts in the opposite direction to its velocity. The
magnitude of the force is given by:

D =
1

2
CDρairAv2,

where CD is the drag coefficient (which is dependent on the projectile’s shape), ρair is the density
of air and A is the area of the projectile in the plane normal to its velocity. Drag coefficients for
various shapes are given in Figure 1.

3

Figure 1:
Some drag coefficients.

Introducing drag modifies the expression for the horizontal acceleration of the projectile as follows:

m
d2x

dt2
= −D cos θ

⇒ d2x

dt2
= −D

m
cos θ.

Here, θ is the angle the velocity makes to the horizontal. Notice that we cannot write down a
simple expression for vx = dx

dt in terms of t: there is no algebraic form for the integral as θ is a
function of t.

The expression for the vertical acceleration becomes:

m
d2y

dt2
= −D sin θ +mg

⇒ d2y

dt2
= −D

m
sin θ + g.

4

Again, we cannot write down an algebraic expression for vy = dy
dt .

In order to plot the trajectory with air resistance, we need to resort to numerical methods. The
simplest technique is to break the trajectory down into a set of small steps, each of which takes
only a small time δt. Given the force, acceleration, velocity and position at the start of each step,
we can calculate these quantities at the end of the step. Repeating this process many times allows
us to map out the trajectory. Horizontally, for the ith step, the change in velocity is given by:

d2xi
dt2

=
dvx i

dt
= −Di

m
cos θi

⇒ δvx i = −Di

m
cos θi δt.

The change in the vertical velocity is:

d2yi
dt2

=
dvy i
dt

= −Di

m
sin θi + g

⇒ δvy i = −Di

m
sin θi δt+ g δt.

Hence, at the end of the step, the components of the velocity are:

vx i+1 = vx i + δvx i

vy i+1 = vy i + δvy i.

The position at the end of the step is given by:

xi+1 = xi + vx iδt

yi+1 = yi + vy iδt.

We will use this approach, referred to as the Euler method, to plot the trajectory of the projectile.

[14]: def drag(cd, area, rho, velx, vely):
'''
Return horizontal and vertical drag force on body given its drag␣

↪→coefficient, area,
density of medium in which it's moving and horizontal and vertical velocity.
'''
v2 = velx**2 + vely**2
sinTheta = vely/np.sqrt(v2)
cosTheta = velx/np.sqrt(v2)
Dx = -0.5*cd*rho*area*v2*cosTheta
Dy = -0.5*cd*rho*area*v2*sinTheta

5

return Dx, Dy
#
nEuler = 5000
dt = tMax/nEuler
xEuler = np.zeros(nEuler)
yEuler = np.zeros(nEuler)
xE = 0.0 # m
yE = 0.0 # m
vX = ux # m/s
vY = uy # m/s
#CD = 0.47
CD = 0.0
rad = 0.025 # m
Area = np.pi*rad**2 # m**2
rhoAir = 1.2 # kg/m**3
rhoProj = 2000.0 # kg/m**3
mProj = 4/3*np.pi*rad**3*rhoProj # kg
print(" ")
print("Radius {:5.3f} m, mass {:5.3f} kg.".format(rad, mProj))
print("Initial position ({:5.2f}, {:5.2f}) m.".format(xE, yE))
print("Initial velocity ({:5.2f}, {:5.2f}) m/s.".format(vX, vY))
print("Maximum time {:5.3f} s, time step {:5.3e} s.".format(tMax, dt))
#
iStep = 0
while (yE > 0 or iStep == 0) and iStep < nEuler:

xEuler[iStep] = xE
yEuler[iStep] = yE
xE = xE + vX*dt
yE = yE + vY*dt
dragX, dragY = drag(CD, Area, rhoAir, vX, vY)
vX = vX + dragX/mProj*dt
vY = vY + dragY/mProj*dt + g*dt
iStep = iStep + 1

#
print("Final step is number {:d}, actual flight time {:5.3f} s.".format(iStep,␣
↪→iStep*dt))

plt.figure(figsize = (6, 5))
plt.title("Projectile motion")
plt.xlabel("x (m)")
plt.ylabel("y (m)")
plt.plot(xArr, yArr, linestyle = '--', color = 'b', label = 'No air resist')
plt.plot(xEuler[0:iStep], yEuler[0:iStep], linestyle = '-', color = 'r', label␣
↪→= 'With air resist')

plt.grid(color = 'g')
plt.legend()
plt.show()

6

Radius 0.025 m, mass 0.131 kg.
Initial position (0.00, 0.00) m.
Initial velocity (30.00, 40.00) m/s.
Maximum time 8.155 s, time step 1.631e-03 s.
Final step is number 5000, actual flight time 8.155 s.

1.4 Projectile motion: behaviour of velocity with time
It is interesting to investigate the behaviour of the x and y components of the velocity with time.
The following code allows this to be done for the horizontal component of the velocity. Notice how
markdown syntax can be used in plot titles and axis labels (here for the label on the ordinate, or
y axis)!

[16]: nEuler = 10000
dt = tMax/nEuler
xEuler = np.zeros(nEuler)
yEuler = np.zeros(nEuler)
vXEuler = np.zeros(nEuler)
xE = 0.0

7

yE = 0.0
vX = ux
vY = uy
CD = 0.47
rad = 0.025
Area = np.pi*rad**2
rhoAir = 1.2
rhoProj = 2000.0
mProj = 4/3*np.pi*rad**3*rhoProj
print(" ")
print("Radius {:5.3f} m, mass {:5.3f} kg.".format(rad, mProj))
print("Initial position ({:5.2f}, {:5.2f}) m.".format(xE, yE))
print("Initial velocity ({:5.2f}, {:5.2f}) m/s.".format(vX, vY))
print("Maximum time {:5.3f} s, time step {:5.3e} s.".format(tMax, dt))
#
iStep = 0
while (yE > 0 or iStep == 0) and iStep < nEuler:

xEuler[iStep] = xE
yEuler[iStep] = yE
vXEuler[iStep] = vX
xE = xE + vX*dt
yE = yE + vY*dt
dragX, dragY = drag(CD, Area, rhoAir, vX, vY)
vX = vX + dragX/mProj*dt
vY = vY + dragY/mProj*dt + g*dt
iStep = iStep + 1

#
print("Final step is number {:d}, actual flight time {:5.3f} s.".format(iStep,␣
↪→iStep*dt))

tEuler = np.linspace(0.0, tMax, nEuler)
plt.figure(figsize = (6, 5))
plt.title("Projectile motion, horizontal velocity")
plt.xlabel("t (s)")
plt.ylabel(r"v_x (m/s)")
plt.plot(tEuler[0:iStep], vXEuler[0:iStep], linestyle = '-', color = 'r', label␣
↪→= 'With air resist')

plt.grid(color = 'g')
plt.legend()
plt.show()

Radius 0.025 m, mass 0.131 kg.
Initial position (0.00, 0.00) m.
Initial velocity (30.00, 40.00) m/s.
Maximum time 8.155 s, time step 8.155e-04 s.
Final step is number 8347, actual flight time 6.807 s.

8

1.5 Putting multiple plots in one figure
Sometimes it is useful to be able to incorporate more than one plot in a figure. We can do this
using matplotlib.pyplot as shown below.

[19]: fig = plt.figure(figsize = (12, 9)) # opens a figure
fig.suptitle('Projectile motion plots', fontsize=24) # overall title
#
plt.subplot(2, 2, 1) # creates a 2 row, 2 column grid and starts in the first␣
↪→(top left) square

plt.title("Projectile motion, no air resistance")
plt.xlabel("x (m)")
plt.ylabel("y (m)")
plt.plot(xArr, yArr, linestyle = '--', color = 'b', label = 'x, y funcs of t')
plt.legend()
plt.grid(color = 'g')
#
plt.subplot(2, 2, 2) # plot in second square (reading from left to right, top␣
↪→to bottom)

9

plt.title("Projectile motion, with air resistance"

[19]:)
plt.xlabel("x (m)")
plt.ylabel("y (m)")
plt.plot(xArr, yArr, linestyle = '--', color = 'b', label = 'No air resist')
plt.plot(xEuler[0:iStep], yEuler[0:iStep], linestyle = '-', color = 'r', label␣
↪→= 'With air resist')

plt.grid(color = 'g')
plt.legend()
#
plt.subplot(2, 2, 3) # plot in third square
plt.title("Projectile motion, horizontal velocity")
plt.xlabel("t (s)")
plt.ylabel(r"v_x (m/s)")
plt.plot(tEuler[0:iStep], vXEuler[0:iStep], linestyle = '-', color = 'r', label␣
↪→= 'With air resist')

plt.grid(color = 'g')
plt.legend()
#
plt.tight_layout()
plt.show()

10

The figure is created as before, using fig = plt.figure(figsize = (6, 16)). You will have to
adjust the size parameters so there is space for all your subplots!

The command fig.suptitle('Projectile motion plots', fontsize=20) produces an overall
title for the figure.

Each supbplot is created using plt.subplot(nRows, nCols, nThisPlot). Here, the values nRows
and nCols tell Python to draw an array of subplots with (you’ve guessed it) nRows rows and nCols
columns. Note that almost everywhere, rows and columns are given in that order! The index
nThisPlot indicates which position the current plot is to fill. The first (with nThisPlot = 1 is the
top left slot, the second (nThisPlot = 2) is next slot reading from left-to-right and top-to-bottom,
and so on. The commands that we have used for single plots can be used for subplots (titles, axis
labels etc.).

The command plt.tight_layout() ensures the space between the plots, their titles and the overall
title is minimised.

The figure is displayed using the fig.show() command.

1.6 Summary
This week, we have solved a problem that cannot be tackled algebraically. Many situations in
Physics require this kind of numerical approach. The Euler method we have used is a powerful
technique in that the way it works is obvious (though actually getting a program using the method
to do what you want it to may not be easy!) and is applicable to many equations. The downside
of the Euler method is that it only works if the step size is small enough, so you must think about
how you can check that step size you are using is adequate.

11

	Lecture 8
	Introduction
	Projectile motion with no air resistance
	Projectile motion with air resistance
	Projectile motion: behaviour of velocity with time
	Putting multiple plots in one figure
	Summary

