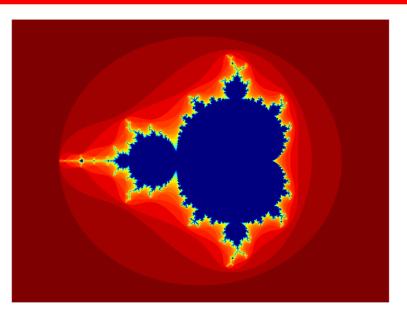
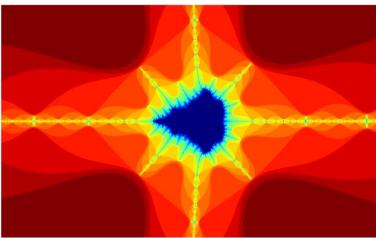

Phys105 – Introduction to Computational Physics

- Prof. Tim Greenshaw.
 - Office hours, Mon. 16:00-17:00.
 - Email green@liv.ac.uk
- Dr Carl Gwilliam.
 - Office hours, Tues. 16:00-17:00.
 - Email <u>C.Gwilliam@liverpool.ac.uk</u>
- Lectures:
 - Wednesday 15:00-16:00.
 - Online (MS Teams).
- Computer classes:
 - Two hours every second week.
 - Time depends on your bubble!
 - Online now, may return to the MOTC (Maths, room 101).

- Recommended textbooks:
 - "A Student's Guide to Python for Physical Modeling", Kinder and Nelsen (Princeton University Press).
 - "Learning Scientific Programming with Python", Hill (Cambridge University Press).
- Assessment:
 - Computer Classes.

LEARNING

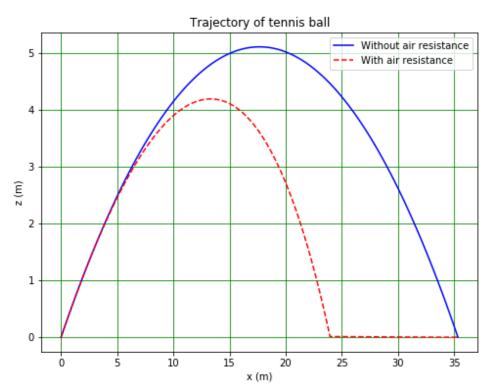

CHRISTIAN HILL


PROGRAMMING

Phys105 – Introduction to Computational Physics

• Outline syllabus:

- Installing Python and necessary packages/tools.
- Introduction to Python and Jupyter Notebooks.
- First steps with Python.
- Python and NumPy data structures.
- Plotting data.
- Generating random numbers and using these in Monte Carlo models.
- Numerical solution of differential equations.
- Introduction to computer algebra.

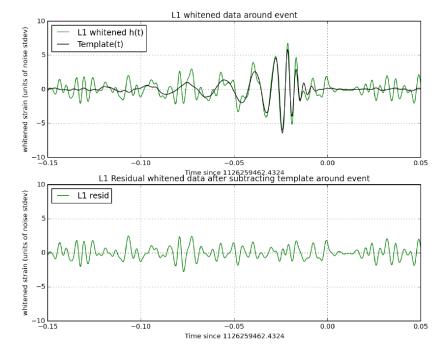

Aims and methods

- Why do "Computational Physics"?
- An example.
- A tennis ball is thrown upwards from ground level at an angle of 30° to the horizontal and a speed of 20 m/s.
 Calculate how far it flies before its first bounce.
- We all know how to solve this problem using...

$$s = ut + \frac{1}{2}at^{2} \qquad s = \frac{1}{2}(u+v)t$$
$$v^{2} - u^{2} = 2as \qquad a = \frac{v-u}{t}$$

...but the agreement of our calculation with experiment, is poor!

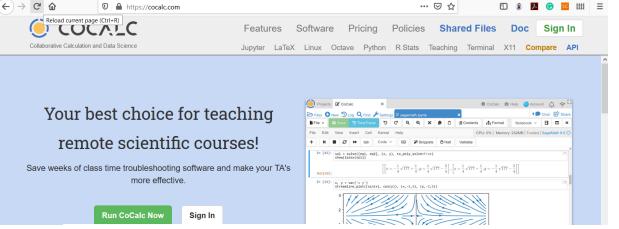
- To provide a realistic answer, need to include air resistance.
- No algebraic solution, but can be solved numerically using a computer.



Aims and methods

- Aim of Phys105 is to show how this problem can be solved, and also how computers can help with:
 - Analysing and presenting data.
 - Simulating the behaviour of stochastic systems.
 - Differentiating and integrating functions.
- Computer can also be used to do many other things we won't look at in this course, such as control equipment or capture data.
- We will use the Python programming language and work in Jupyter Notebooks.

- Python is one of the most widely used programming languages...
- ... and Jupyter Notebooks are an excellent way of documenting scientific analysis.



This lecture Finding the course material

- In this lecture we will:
 - See how to navigate to the course material on CoCalc.
 - Introduce Jupyter Notebooks.
 - Look at some Markdown examples.
 - Have a first look at using *least_squares* to fit a straight line to some data points.


- Start CoCalc at <u>https://cocalc.com</u>.
- Sign in using the ID you have created.

- Click John Shaw Phys105 Introduction to Computational Physics/Phys105
- Then Phys105 Introduction to Computational Physics
- And ComputerClassesStudent
- And Phys105-Week01
- And finally on Phys105-Week01-Student.ipynb

Jupyter Notebooks

Jupyter Phys105-Week01-Student (autosaved)

- Jupyter Notebooks consist of cells which can contain either computer code (Python) or text (with tables, hyperlinks, images, formulae...).
- When you create a new cell, its default type is Code.
- To change this to Markdown, select it (click in it) then click on *Cell* (menu bar), *Cell Type* and *Markdown*.

- Alternatively:
 - Select the cell.
 - Press *Esc*.
 - ◆ Type *m*.
- To change the cell back to code, use the menu or select the cell, press *Esc* and then type *y*.
- To delete a cell use the menu or press
 Esc, *d*, *d*.

Markdown cells

- Text can be entered directly into Markdown cells.
- Create italics by writing _italics_ or *italics*.
- Bold text is obtained using __bold__ or **bold**.
- To see the results run (or compile) the cell by selecting it and using *Run* in the menu bar...
- ... or pressing *Shift* + *Enter*.
- These commands run the cell and select the next cell, or create a new cell if there is no next cell.
- Using *Ctrl* + *Enter* just runs the cell.

A table as Markdown:

Number	Angle (degrees)	Cosine of angle
0	0	1
1	30	0.866
2	45	0.707
3	60	0.5
4	90	0.0

The same table when it is compiled:

Number	Angle (degrees)	Cosine of angle
0	0	1
1	30	0.866
2	45	0.707
3	60	0.5
4	90	0.0

Switch back to Markdown by doubleclicking in the cell.

Code cells

 Code cells are used to write elements of a Python program, e.g.

In []: 3 + 4

• When this cell is run, the code is executed:

Editing the cell and re-running it gives...

In [2]: 3 + 2

Out[2]: 5

- We will learn to develop Python programs from scratch in this module...
- ...but the first thing we will look at is how to use *least_squares* and an existing program to fit a straight line to data, as this is needed for Practical Physics I (Phys106).

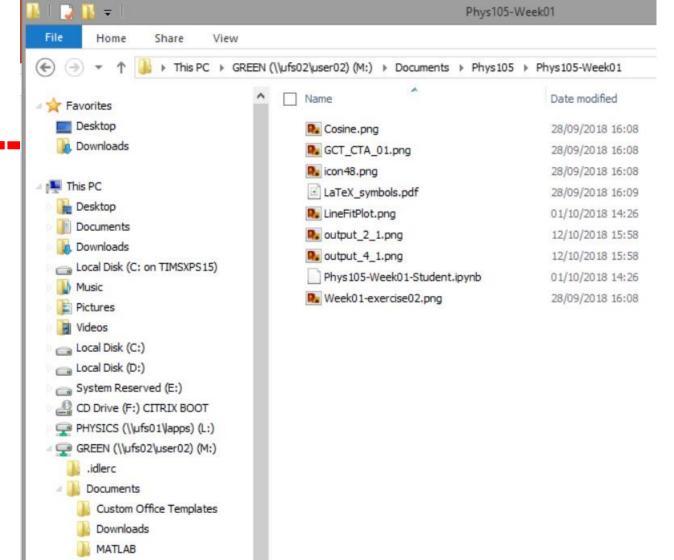
Comments

- You can enter comments into both Markdown and Code cells.
- These are used to explain what the Markdown or Python is doing.
- For Markdown, the format is:

This you see, <!-- this you don't, --> and this you see again!

When this is run, the result is:

This you see, and this you see again!


For Code cells, use #...

In [5]: 3 + 4 # + 5 Out[5]: 7
or three quotes.

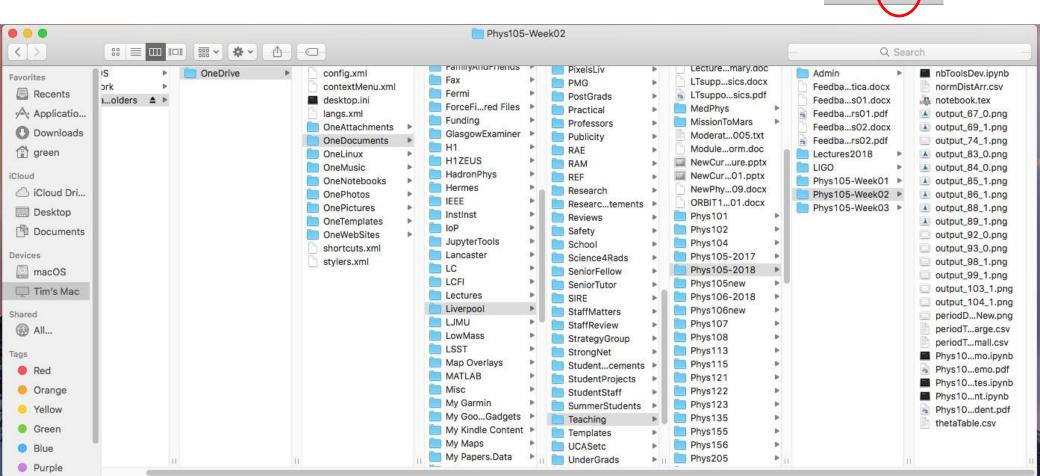
Out[8]: '3 + 4 + 5'

Directories on Windows

- Use *File Explorer*.
- Access via Start, Windows System, File Explorer.
- In *File Explorer*, click
 View and select
 Navigation Pane.
- Shows you all folders in "tree" on the left and selected folder's contents on the right.
- Can move (or copy) files on the right into folders on the left...

My Music

Phys105

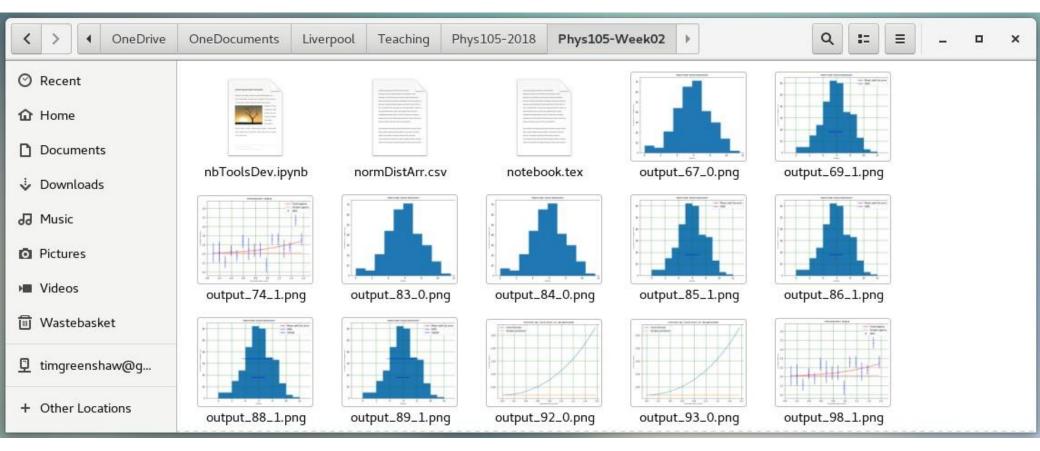

Phys108

.ipynb_checkpoints Phys105-Week01 Phys105-Week02

My Pictures My Video

Directories on a Mac

Use *Finder*, can start from *Dock*.


Choose columns view

11

Directories on Linux

Many different flavours of Linux!Example here is using CentOS 7.

Select *Applications*, *Accessories*, *Files*.

