Phys105-Week(08-Student
January 4, 2021

1 Introduction to Computational Physics - Week 8

1.1 Table of contents week 8

Introduction to Computational Physics - Week 8: »
-Table of contents week 8: »
-Introduction to week 8: »
-Numerical solution of equations: »
—Graphical approach: »

—~Week 8 exercise 1: »

—Solving equation using Numpy: »
—~Week 8 exercise 2: »

—Week 8 exercise 3: »

—~Week 8 exercise 4: »

—Week 8 exercise 5: »

-Image analysis with Numpy: »
—Week 8 exercise 6: »

—~Week 8 exercise 7: »

1.2 Introduction to week 8

Computer programs written in languages like Fortran, C and Java are compiled before they are run.
This means the original source code is converted into an executable file. The program is actually
run in a separate step, using the executable file. In contrast, Python code is interpreted statement
by statement at the time that the program is run. The two approaches have their advantages and
disadvantages. The advantage of the separate compilation step is that, as the entire program is
compiled in one go, it can be optimised to ensure that it uses the computer’s memory and processors
as efficiently as possible. The disadvantage is that the development process takes more time. If you
change anything, you have to compile the entire program again before you can run it and test it.
This is one of the reasons that developing programs using Python is usually considerably quicker
than working in C, Fortran or Java. The downside is that Python programs are usually slower. For
many applications, this isn’t a problem, but in some scientific analyses, for example involving large
datasets, it can cause difficulties. This is where Numpy can be very useful. It allows programs to
be written using Python, but the underlying Numpy code has been written in C and compiled,
allowing execution at high speed. Learning to use Numpy effectively is therefore a useful skill for
scientific programmers.

This week we will look at an example of how Numpy arrays can be used to solve equations nu-
merically, and then illustrate how the same technique can be used to do some image processing.

[1]:

The idea is not so much that the techniques used are the best available for solving equations or
edge-finding in images, but that they show how Numpy functions can often be used as alternatives
to Python control structures in scientific programming.

1.3 Numerical solution of equations
1.3.1 Graphical approach

Suppose we have a function y(z) and we want to know the values of z where it crosses a threshold
value T, i.e. we want to solve the equation y(z) = T. We could do this using a graph:

<!-- Student -->
import numpy as np
import matplotlib.pyplot as plt
/%matplotlib inline
#
def gaussFunc(mu, sigma, x):
g = 1/(np.sqrt(2*np.pi)*sigma)*np.exp(-(x - mu)**2/(2*sigma**2))

return g
#
mu = 6.0
sigma = 2.0
#
thresh = 0.1
#
xMin = 0.0
xMax = 12.0

nPoints = 12

xArr = np.linspace(xMin, xMax, nPoints)
#

yArr = gaussFunc(mu, sigma, xArr)

#

plt.figure(figsize = (6, 4))
plt.title("Function")

plt.xlabel("x")

plt.ylabel("y")

plt.plot(xArr, yArr, color = 'b', linestyle = '-')

plt.plot(xArr, thresh*np.ones(nPoints), color = 'r', linestyle = '--')
plt.grid(color = 'g')

plt.show()

[2]:

Function

0175 /__\
0150 / \
0.125 \

o, 0,100 j x
0075 / \
o | \\

0,000

0200

1.3.2 Week 8 exercise 1

Determine the solutions of the equation y(x) = T from the graph above. How could the precision
of the solutions be increased?

1.3.3 Solving equation using Numpy

As an alternative to the graphical solution, we could also manipulate the Numpy array that contains
the values of the function in the following way.

The first step is to make a logical (or boolean) array that is True where the function is above the
threshold thresh and False otherwise.

<!-- Student -->
#
LyArr = yArr > thresh

1.3.4 Week 8 exercise 2

Print out the values of the array LyArr. Convert the array from type bool to type int and print
out these values. Use a Numpy function to sum the contents of both the boolean and integer arrays.
Compare the results!

We then make another version of the logical array in which all the elements are shifted to the left.

[3]:

[4] :

[5]:

[6]:

<!-- Student -->

#

LyArrXL = np.zeros(nPoints) .astype(bool)

shiftX = 1

LyArrXL[0:nPoints - shiftX] = LyArr[shiftX:nPoints]
print ("LyArr\n",LyArr)

print ("LyArrXL\n",LyArrXL)

LyArr

[False False False False True True True True False False False Falsel]
LyArrXL

[False False False True True True True False False False False Falsel]

Now we take the logical not of the first array.

<!-- Student -->

#

LyArrNot = np.logical_not(LyArr)
print ("LyArrXL\n",LyArrXL)

print ("LyArrNot\n",LyArrNot)

LyArrXL
[False False False True True True True False False False False Falsel]

LyArrNot
[True True True True False False False False True True True Truel

Taking the logical and of LyArrXL and LyArrNot, we can determine the left-hand position in the
array which corresponds to the place where the function crosses the threshold, as below.

<!-- Student -->

#

boolThrLl = np.logical_and(LyArrNot, LyArrXL)
print ("boolThrL\n",boolThrL)

boolThrL
[False False False True False False False False False False False Falsel]

We can now get the left-hand x value at which the function crosses the threshold using a further
feature of Numpy arrays: if we use a set of logical values as the indices of an array, the values that
are returned are those with index True. This is shown below.

<!-- Student -->

#

xThrL = xArr[boolThrL]
np.set_printoptions(precision = 2)
print ("xThrL",xThrL)

xThrL [3.27]

[7]:

1.3.5 Week 8 exercise 3

Make a plot to show that the x value above is (approximately!) in the correct position.

1.3.6 Week 8 exercise 4

How could the precision of the x value of the crossing point be improved?

1.3.7 Week 8 exercise 5

Copy the code above and edit it so that it finds the position of the right-hand point at which
the gaussian function crosses the threshold. Plot a graph showing the position of the right-hand
crossing point.

1.4 Image analysis with Numpy

Numpy can also be used to analyse images. The example below shows how a picture of a telescope
can be read into Numpy and then manipulated so that only pixels above a certain threshold are
displayed.

As an aside, if you want to manipluate images using Python, the scipy.ndimage package provides
a large range of image analysis software available; see here for more information!

<!-- Student -->
#
import datetime
now = datetime.datetime.now()
print("Date and time ",str(now))
#
import numpy as np
import scipy.ndimage as scimg
import matplotlib.pyplot as plt
Jmatplotlib inline
#
def rgbal2rgb(rgba, background = (255, 255, 255)):
Function to convert RGBA images into RGB format. Input RGBA image (and,
—background); output RGB image
rows, cols, chans = rgba.shape
#
debug = False
#
if debug:
if chans ==
print ("RGBA image")
elif chans ==
print ("RGB image")
return rgba

https://docs.scipy.org/doc/scipy/reference/ndimage.html

def

else:

print ("Channel number is",chans)

sys.exit ()
else:

assert chans == 4, 'RGBA image must have 4 channels.'

#

rgb = np.zeros((rows, cols, 3),

dtype = 'float32')

r, g, b, a = rgbal:,:,0], rgbal:,:,1], rgbal:,:,2], rgbal:,:,3]

#

= np.asarray(a, dtype='float32')/255.0

a
#
R, G, B = background
#
r
r

gbl:, :, 0] = r*a + (1.0 - a)*R
gbl:, :, 1] = gxa + (1.0 - a)*G
rgbl:, :, 2] = b*xa + (1.0 - a)*B

#
return np.asarray(rgb, dtype =

rgb2grey(rgb, negative = 0):

rr

Convert RGB image to greyscale.

rr

rows, cols, chans = rgb.shape
#
debug = True

np.uint8)

Input RGB, output greyscale image.

#
if debug:
if chans ==
print ("RGBA image")
elif chans ==
print ("RGB image")
elif chans ==
print ("Greyscale image")
return rgb
else:
print ("Channel number is",chans)
sys.exit()
else:
assert chans == 3, 'RGB image must have 3 channels.'
#

grey = np.zeros((rows, cols), dtype = 'float32')

#

r, g, b =rgbl:,:,0], rgbl:,:,1

#

1, rgbl:,:,2]

greyl:, :1 = (0.2125%(r*negative + (negative - 1.0)*r) +
0.7154*(g*negative + (negative - 1.0)xg) +

0.0721*(b*negative + (negative - 1.0)*b))

#
return np.asarray(grey, dtype

#

Read in image

imFile = "Telescope.bmp"
#imFile = "Shark. jpg"

#

imgRaw = plt.imread(imFile)

np.uint8)

nRows = imgRaw.shape[0] # row corresponds to pizel's y coordinate
nCols = imgRaw.shapel[l] # col corresponds to pizel's z ccordinate

nDepth = imgRaw.shape[2] # depth ==

~ (A is alpha, i.e. transparency)
img = np.zeros((nRows, nCols))
#
if nDepth == 4:

imgRGB = rgbal2rgb(imgRaw)

img = rgb2grey(imgRGB)
elif nDepth == 3:

imgRGB = imgRaw

img = rgb2grey(imgRGB)
elif nDepth ==

imgRGB = imgRaw

img = imgRaw
else:

print(" ")

3 for red, blue green (RBG), == 4 for RBGA,

print ("Unexpected image depth",nDepth)

sys.stop()
#

print ("Number of rows",nRows,"of columns",nCols,"of pixels",nRows*nCols,"and,

—depth" ,nDepth)

print ("RGB min and max pixel values:",np.amin(imgRGB), np.amax(imgRGB))
print("Greyscale min and max pixel values:",np.amin(img), np.amax(img))

#

Set threshold for finding edges,
—~telescope

thresh = 10.0

#thresh = 98.0

imgThr = np.zeros((nRows, nCols))

imgThr = img > thresh

#

print(" ")

fig = plt.figure(figsize=(12, 13))
fig.add_subplot(2, 2, 1)

thresh ~ 98 for shark, thresh ~ 10 for,

plt.title("Picture of " + imFile + " raw"

plt.xlabel('Column', fontsize = 12)

plt.ylabel('Row', fontsize = 12)

imgplot = plt.imshow(imgRaw)

#

fig.add_subplot(2, 2, 2)

plt.title("Picture of " + imFile + " RGB")
plt.xlabel('Column', fontsize = 12)
plt.ylabel('Row', fontsize = 12)

imgplot = plt.imshow(imgRGB)

#

fig.add_subplot(2, 2, 3)

plt.title("Picture of " + imFile + " grey scale")
plt.xlabel('Column', fontsize = 12)
plt.ylabel('Row', fontsize = 12)

imgplot = plt.imshow(img, cmap = "Greys")

#

fig.add_subplot(2, 2, 4)

plt.title("Picture of " + imFile + " grey scale above " + str(thresh))
plt.xlabel('Column', fontsize = 12)
plt.ylabel('Row', fontsize = 12)

imgplot = plt.imshow(imgThr, cmap = "Greys")

#

plt.show()

#

then = now

now = datetime.datetime.now()

print(" ")

print("Date and time",str(now))

print ("Time since last check is",str(now - then))

Date and time 2021-01-04 14:48:28.999221

RGB image

Number of rows 1064 of columns 684 of pixels 727776 and depth 3
RGB min and max pixel values: 0 255

Greyscale min and max pixel values: 0 237

Picture of Telescope bmp raw 0 Picture of Telescope_bmp RGB

200 4 200 4
400 4 400 4
= =
& &
600 4 600 4
8OO BOO
1000 - 1000 |
0 200 400 600 0 200 400 B00
Column Column
DF‘icture of Telescope.bmp grey scale Pictuge of Telescope.bmp grey scale above 10.0
200 4 200 4
400 1 400 1
= =
& &
600 600 A
8OO BOO
1000 1000 +
0 200 400 600 0 200 400 800
Column Column

Date and time 2021-01-04 14:48:29.689145
Time since last check is 0:00:00.689924

This “thresholded” image is a two-dimensional equivalent of the one-dimensional region of the
gaussian which is greater that the threshold value above. We can therefore use a two-dimensional
version of our “shift left and right” algorithm to find where the threshold is crossed, which will give
as the edges of the thresholded figure. Working in two dimensions means we have to both shift left
and right and shift up and down.

[8]:

<!-- Student -->

#

import datetime

now = datetime.datetime.now()

print("Date and time",str(now))

#

imgMin = np.amin(img)

imgMax = np.amax(img)

print("Min intensity in image",imgMin,"max intensity",imgMax)
#

shiftR = 3

shiftC 3

print ("nRows" ,nRows, "nCols",nCols)

print("shiftR",shiftR,"shiftC",shiftC)

imgEdge = np.full((nRows, nCols), False)

imgEdge [0:nRows - shiftR, 0:nCols - shiftC] = \

np.logical_or(np.logical_or(np.logical_and(imgThr[0:nRows - shiftR, 0:nCols,

—- shiftC],

np.logical_not (imgThr [0:nRows -
—shiftR, shiftC:nCols])), # horizontal left
np.logical_and(np.logical_not(imgThr [0:nRows -
—shiftR, 0:nCols - shiftC]),
imgThr [0:nRows - shiftR, shiftC:
—nCols])), # horizontal Tight
np.logical_or(np.logical_and(np.logical_not (imgThr [0:nRows -
—shiftR, 0:nCols - shiftC]),
imgThr [shiftR:nRows, 0:nCols -,
—shiftC]), # wvertical bottom
np.logical_and(imgThr [0:nRows - shiftR, 0:nCols
—- shiftC],
np.logical_not(imgThr [shiftR:
—nRows, 0:nCols - shiftCl)))) # wvertical top
imgEdge [0:nRows, 0] = False
imgEdge [0, 0:nCols] = False

imgEdge [0:nRows, nCols - shiftC - 1] = False
imgEdge [nRows - shiftR - 1, 0:nCols] = False
#

print(" ")

fig = plt.figure(figsize=(4, 8))

plt.title("Plot of " + imFile + " x and y edges", fontsize = 12)
plt.xlabel('x pixel', fontsize = 12)

plt.ylabel('y pixel', fontsize = 12)

plt.imshow(imgEdge, cmap = "Greys")

plt.show()

#

then = now

10

now = datetime.datetime.now()

print(" ")

print("Date and time",str(now))

print("Time since last check is",str(now - then))

Date and time 2021-01-04 14:48:29.894825
Min intensity in image O max intensity 237
nRows 1064 nCols 684

shiftR 3 shiftC 3

Plot of Telescope.bmp x and y edges

200

1000

0 100 200 300 400 500 600
x pixel

Date and time 2021-01-04 14:48:30.085316
Time since last check is 0:00:00.190491

11

[1:

1.4.1 Week 8 exercise 6

Copy the code cell above and change the parameters in it so that only horizontal edges in the
image are identified. Does this mean you have to remove the “shift left and right” (shift columns)
operation or the “shift up and down” (shift rows) operation from the image manipulation?

1.4.2 Week 8 exercise 7

Copy the relevant code cells from above and edit them so that you read in the image penguin.jpg.
Adjust the threshold to get the clearest outline you can of the penguin in the image.

12

	Introduction to Computational Physics - Week 8
	Table of contents week 8
	Introduction to week 8
	Numerical solution of equations
	Graphical approach
	Week 8 exercise 1
	Solving equation using Numpy
	Week 8 exercise 2
	Week 8 exercise 3
	Week 8 exercise 4
	Week 8 exercise 5

	Image analysis with Numpy
	Week 8 exercise 6
	Week 8 exercise 7

