Phys105-Week(01-Student
January 31, 2020

1 Introduction to Computational Physics - Week 1

1.1 Table of contents week 1

Introduction to Computational Physics - Week 1: Section 1
-Table of contents week 1: Section 1.1

-Introduction to week 1: Section 1.2

-Installing Python and Jupyter software: Section 1.3
-Jupyter Notebooks: Section 1.4

—~Week 1 exercise 1: Section 1.4.1

-Markdown cells: Section 1.5

—Entering text and tables: Section 1.5.1

—Including links: Section 1.5.2
—Figures: Section 1.5.3
—Entering formulae: Section 1.5.4
—Week 1 exercise 2: Section 1.5
-Code cells: Section 1.6

—An imaginary experiment: Section 1.6.1
—Fitting a straight line to data: Section 1.6.2
~Week 1 exercise 3: Section 1.6.3

—Results: Section 1.6.4

—~Week 1 exercise 4: Section 1.6.5

—~Week 1 exercise 5: Section 1.6.6

5

1.2 Introduction to week 1

The aim of the Introduction to Computational Physics (Phys105) module is to provide a practical
introduction to programming in Python for Physics students and students on related courses. It
takes a “bottom-up” approach: from day one we use examples to develop an understanding of how
Python programs can be used to tackle physics problems, rather than first learning a lot of general
principles and then trying to apply them. There are two reasons for this. Firstly, you will be using
Python in your practical and some other modules soon, so need to be in a position to do some
things quite quickly. Secondly, most people learn more effectively by actually doing things than by
just hearing how they can be done.

This first Notebook provides some of the basic information you need for the Phys105 module. It
shows you how to install the tools we will be using in the course (the Python programming language
and Jupyter Notebooks) and provides a few exercises that will help you start to learn how to tackle
problems using them. When you have finished working through it, you should understand the

basic structure of a Notebook, be able to write Markdown that allows you to present text, figures,
formulae and tables attractively in Notebooks and be able to use the program least_squares in
a Notebook to fit a straight line to a set of data points.

Please take the time to read the information provided here, don’t just skip to the exercises. If you
have read through the Notebook and still have difficulties with the exercises, or don’t understand
something, ask one of the demonstrators for help. Further information and explanation is provided
in the recommended textbooks (A student’s guide to Python for physical modelling, or Learning
scientific programming with Python). There is also lots of information on Python and Jupyter
Notebooks on the web, so you can ask Google for help!

When you have finished the exercises, ask one of the demonstrators to mark your work.

1.3 Installing Python and Jupyter software

Python and Jupyter Notebooks have aready been installed on the University PCs you will be using
in the Phys105 practical sessions.

If you want to use Python and Jupyter Notebooks on your own computer, you can install the
software required for Windows, Mac or Linux as follows:

Go to the Anaconda web site https://www.anaconda.com/download/. Select Windows, macOS or
Linux, depending on the operating system running on your computer. Download the version of
Anaconda labelled Python 3.7 (not the Python 2.7 version!). Follow the installation instructions
on the web site.

Once Anaconda is installed, open it and launch Jupyter Notebook to get started:

e On Windows, click the “Anaconda3” icon in the start menu and then “Jupyter Notebook”.

e On Linux, open a terminal window , type in the command “jupyter notebook &” and press
Enter.

e On a Mag, click on “Anaconda-Navigator” in the LaunchPad and then “Jupyter Notebook”
or open a terminal window, type in the command “jupyter notebook &” and press Enter.

This “Phys105-Week01-Student.ipynb” file can be opened within Jupyter, which will allow you to
work with the code. It is strongly advised you do this as opposed to just reading the PDF file!

1.4 Jupyter Notebooks

Jupyter Notebooks consist of cells in which nicely formatted documents can be written and cells
which contain computer code. The language used to create the document cells is called Markdown,
and we will use the Python programming language in the code cells. We will start off by learning
how to create Markdown documents, but learning Python will be the main aim of this course.

When you start a new Notebook, its first cell will be a code cell and any new cell you create will
be a code cell by default. You can create a new cell below the current cell by clicking the “+7”
symbol in the Notebook menu bar or by using the Insert menu. (Click on Insert, then on Insert
Cell Above, or Insert Cell Below, as appropriate.) To change a cell’s type to Markdown, select the
cell (by clicking in it) and then click Cell, Cell Type and Markdown. Alternatively, select the cell,
press Esc, then m (for Markdown). You will have to click inside the cell (or press Enter) before it
is selected and you are able to type in it!

https://press.princeton.edu/titles/11349.html
http://www.cambridge.org/gb/academic/subjects/physics/mathematical-methods/learning-scientific-programming-python?format=PB#07de1fdPT6eysmS0.97
http://www.cambridge.org/gb/academic/subjects/physics/mathematical-methods/learning-scientific-programming-python?format=PB#07de1fdPT6eysmS0.97

A Markdown cell can be changed to a code cell using the Cell menu, or by typing Fsc, ¥.
Cells can be deleted by selecting them and then using the Edit menu, or by pressing Esc, d, d.

1.4.1 Week 1 exercise 1

Look through the menus in the Notebook screen. Use them to create a new cell below this one.
Convert the type of the cell to Markdown, write something in the cell, then delete it. Repeat
this exercise using the keyboard shortcuts described above. If you have problems doing this, ask a
demonstrator for help!

1.5 Markdown cells

Markdown is a way of writing nicely formatted text, allowing the inclusion of pictures, web links,
videos and other features in your Notebooks.

To see how this cell was written using Markdown, double click on it. (Do this now!)

To “run” or “compile” the cell, so the text is formatted nicely, select the cell (click in it) and press
Ctrl + Enter (i.e. press the Ctrl key and hold it down, then press the Enter key, then release both
keys). Use Command + Enter on a Mac. Alternatively, you can click on the Run button on the
menu bar. If you press Shift + Enter, you will run the current cell and move to the next cell (or
create a new cell below the current one if there isn’t one already there).

Flipping between looking at the Markdown (double click) and the compiled cell (Ctrl + Enter) will
allow you to see how Markdown can be used.

1.5.1 Entering text and tables

If you want to write some normal text, just type it into the cell. If you want to emphasize the
text, you can write in italics (using asterisks before and after the section that you want to be in
italics), or make it bold (using double asterisks). (There are alternative ways of getting italics
and of entering bold text, using single and double underscores, respectively.) You can also eress
oeut—text (using two ~ symbols before and after the text to be “deleted”).

If you want a new paragraph, press Enter twice, so you produce an empty line.

If you want to start a new line without having a new paragraph, leave two spaces at the end of the
line, like this:

This is a new line.

So is this.

If you want a numbered list, do this: 1. This is the first entry. 2. This is the second. 3. And this
the third.

Bulleted lists are also easy to produce: * This is the first bullet. * And this the second.

If you want to present information in a table, use the following syntax (double click to see the
Markdown!):

Number Angle (degrees) Cosine of angle

0 0 1
1 30 0.866

https://guides.github.com/features/mastering-markdown/

Number Angle (degrees) Cosine of angle

2 45 0.707
3 60 0.5
4 90 0.0

Table 1 The value of the cosine of several angles.

(You don’t have to line up the Markdown columns; when you run the cell the table will be formatted
for you, but it does make reading and editing the Markdown easier!) Notice that you have to enter
the caption “by hand” below the table; table and figure numbers are not entered automatically.

If you want a title or heading, use the hash symbol. (One hash is a title, two a heading, three a
subheading, etc.) For example, here is a subheading...

1.5.2 Including links

Links to pages on the web can be included as is done below for the introduction to Markdown.
Alternatively, the link can be direct, e.g. https://www.liverpool.ac.uk.

Links can also be “reference style”. This is where you can find the UK google home page. You can
put the link at the end of the paragraph or cell. This makes the Markdown a little easier to read.
There is no visible difference in the text that results when you run the cell.

Links can be made to sections or figures in the Notebook. For example, back to the section Section
1.5.1. Double clicking this cell will allow you to see how the section is labelled (using a “#” followed
by the section title with the spaces replaced by hyphens) and how a link to that label is created.
The label is not allowed to contain any spaces!

1.5.3 Figures

Images stored on your computer can be added using the syntax below (double click on the cell to
see it!). The first example uses the path relative to the folder/directory in which the Notebook is
saved:

https://guides.github.com/features/mastering-markdown/
https://www.liverpool.ac.uk
http://www.google.co.uk

100 -

075 -

050 -

0.25 -

0.00 -

—0.25 1

—0.50 1

-0.75 1

—1.00 4

Figure 1 Cosine as a function of angle

The absolute path can also be used in Markdown as shown below...though you can’t go back further
than the Jupyter start folder/directory. These “remote” images are not automatically incorporated
if you convert your markdown to PDF, so the following section is “commented out”. (Anything
between the “<”, “I” and “~” and the “-” and “>” symbols is treated as a comment, i.e. an
explanatory remark, and is not displayed when the Markdown is compiled.) Remove the comment
marks if you want to see what this bit of Markdown produces.

Figures from the web can be added in the markdown using the syntax shown below. (Again, remove
the comment marks if you want to compile this Markdown.)

This section is commented out, as there is no automatic location and conversion of web images to
PDF, so the above lines would have spoiled the PDF version of this Notebook.

If you want to create a PDF file of this Notebook including the above images, you will have to
download the relevant files to your computer and use a local link!

1.5.4 Entering formulae

Mathematical formulae are entered using LaTeX. How this can be done is best illustrated with a
few examples. A formula can be entered “inline” like this: E = mc?. Notice how the dollar signs
“bracket” the mathematical formula. It is important in Markdown to ensure there are no spaces
between the dollar signs and the characters in the formula. Although spaces are allowed by the
LaTeX standard, they can cause problems when you try and run LaTex on Notebooks, e.g. when
using File, Export Notebook as..., LaTeX, or File, Export Notebook as..., PDF.

Formulae can also be placed on their own line in the centre of the page using two dollar symbols:

http://mirrors.rit.edu/CTAN/info/lshort/english/lshort.pdf

sin’ z + cos’z = 1.

Alternatively, you can use the following syntax, which also allows you to “line up” successive
equations:

™
/ sinzdr = (—cosx)]
0

= — (cos(m) — cos(0))
- (~1-1)
=2.

The ampersand (&) tells LaTeX where to align the equations and the double backslash tells it
where to break the lines. This equation also illustrates the use of the commands (and) to make
brackets of the appropriate size (i.e. that expand as they are nested). (The command backslash
text changes the font in the region delimited by the curly brackets.)

Notice how functions like sin and cos (and log, exp etc.) are entered, and how superscripts (z2)
and subscripts (pg) can be obtained. If you need more than one character in a superscript (or
subscript), enclose the relevant section in curly brackets, e.g. Zmaq-

Fractions are obtained like this %, and a vast array of symbols is available, for example: /2,

2 ~ 2.5, fol 22 dz, 27115:0 Zp. (See here for more.) The backslash followed by a comma in the
integral produces a “slim space” between the z? and the dx, a full space would be obtained using
a backslash with a space after it. As already mentioned, brackets which expand to the required
height can be entered using () or []. Greek letters are written «, § etc. Another example combining
some of these features is the formula for the Fermi function:

1
T o “

Finally, “inline” segments of computer code can be indicated using reverse quotes, for example:
print ("This is a Python 3 print statement"). Three reverse quotes, with a tag indicating
the relevant language, can be used to produce blocks of code. We shall be interested in Python, so
we will be seeing things like:

import numpy as np
import matplotlib.pyplot as plt
#
print ("This illustrates how Markdown can be used to format a block of code")
#
for n in range(0, nMax + 1):
print("n =",n)

Note that the “three reverse quotes with language tag” produces code with colours highlighting the
various elements of the language; much clearer than the inline format.

And that’s about all we need to know about Markdown!

1.5.5 Week 1 exercise 2

In the cell below, write a short document with a heading, a line of text, a shopping list with five
numbered items, a table with two columns (one of which contains the numbers 1 to 7 and the other
the corresponding days of the week), the formula for a gaussian distribution, a link to the Liverpool
University web site and a picture of your choice!

1.6 Code cells

Markdown allows us to write attractive documents quickly and efficiently, but the power of Jupyter
Notebooks is that they allow these documents to be combined with computer code. We can describe
a problem and work on the programs needed to solve it in the same place. Below, we will look at
an example of how this can be of use in the context of laboratory measurements, and at the same
time see our first Python program. We will fit a straight line to some experimental data using a
routine called least_squares.

A word of warning. Unless you have done some programming before, you are unlikely to understand
the nuts and bolts of all of the code below; we will learn that in later weeks. For now, it is important
that you understand how to get data into least_squares, run the program and extract the results,
as you will need to do this in Practical Physics I (Phys106).

1.6.1 An imaginary experiment

Ten measurements have been made of two quantities, x and y. These are thought to be linearly
related, i.e. to lie on a straight line, y = ma + ¢. The z and y values (with their measurement
errors) are:

Measurement x value Errorin z y value Error in y

1 1.50 0.21 14.3 2.1
2 2.31 0.11 20.2 1.7
3 2.78 0.43 30.1 3.3
4 3.91 0.10 41.5 1.1
5 3.88 0.07 42.7 0.9
6 4.76 0.08 47.1 0.8
7 5.62 0.05 52.9 0.5
8 7.02 0.09 68.8 0.7
9 8.45 0.17 85.2 1.2
10 9.65 0.11 99.4 2.9

Table 2 A number of data points which are expected to lie on a straight line.

We will test whether the expected relationship holds by fitting a straight line to the data and
simultaneously determine the values of m and ¢ that best describe the data.

The program in the cells below shows how this can be done. It is broken down into sections
interspersed with an explanation of what each section is doing.

[1]1:

[2]:

1.6.2 Fitting a straight line to data

The first step is to import (load) the Python modules used by the program. Here, we need: *
NumPy (Numerical Python), a library of routines for defining arrays of numbers and working
with them. * Matplotlib.pyplot, a set of plotting routines for making graphs of various types. *
least__squares from scipy.optimize (part of the Scientific Python library), the fitting routine we
shall use.

We also use the “line magic” command
Jmatplotlib inline

to ensure that any plots we make appear in the Notebook and don’t just get stored as files on the
computer.

The following code cell imports the routines we will need. (Note that, in Python, comments are
indicated by a “#”: anything after the hash symbol is not part of the program but is a “comment”
providing information on what the program is doing.) To actually do the importing, you must run
the cell. As for Markdown cells, you do this by selecting it and using the menu, or selecting the
cell and pressing Ctrl + Enter. Alternatively, Shift + Enter will run the cell and move to the next
one or create a new one if there isn’t already a cell after the current one.

<!-- Student -->

import numpy as np

import matplotlib.pyplot as plt

#

least_squares ts a fitting routine

from scipy.optimize import least_squares

#

This "line magic" ensures plots are displayed in the Notebook
Jmatplotlib inline

1.6.3 Week 1 exercise 3

Run the code cell below and check the data that it prints out against the numbers in Table 2. Look
for the mistakes and fix them by editing the Python in the cell. Re-run and re-check the cell until
all the data are correctly entered.

<!-- Student -->

nPoints 1s the number of data points in the fit

nPoints = 10

#

Define NumPy arrays, initially filled with zeros, to store the z and y datay
—values

xData = np.zeros(nPoints)

yData = np.zeros(nPoints)

#

Define arrays to store the errors in z and y

xError = np.zeros(nPoints)

yError

np.zeros (nPoints)

#
Enter the z data points.

xData[0] = 1.50
xDatal[1] = 2.31
xData[2] = 2.78
xData[3] = 3.58
xDatal[4] = 4.08
xDatal[5] = 4.76
xData[6] = 5.62
xDatal[7] = 7.02
xDatal[8] = 8.45
xData[9] = 9.65
#

Enter the y data points.
yData[0] = 14.3
yData[1] = 20.2
yData[2] = 30.1
yData[3] = 36.5
yData[4] = 42.7
yData[5] = 47.1
yDatal[6] = 52.9
yDatal[7] = 68.8
yData[8] = 85.2
yData[9] = 99.4
#

Enter the errors in the = values
xError[0] = 0.21
xError[1] = 0.11
xError[2] = 0.43
xError[3] = 0.13
xError[4] = 0.17
xError[5] = 0.18
xError[6] = 0.15
xError[7] = 0.19
xError[8] = 0.17
xError[9] = 0.11
#

Enter the errors in the y values
yError[0] = 2.1
yError[1] = 1.7
yError[2] = 3.3
yError[3] = 1.1
yError[4] = 0.9
yError[5] = 1.1
yError[6] = 1.5
yError[7] = 0.9
yError[8] = 1.2

[3]1:

yError[9] = 2.9
#
The code below prints out the data we have entered. We will explain how <t
—works
later in the course
print(" ")
print("Check the data points:")
print ("Point\t x\t\t\ty\t")
for n in range(0, nPoints):
print ("{:d}\t{:5.2f}\t+-{:5.2f}\t\t{:5.2f }\t+-{:5.2f}" .\
format(n, xData[n], xError[n], yDataln], yError[n]))

Check the data points:

Point X y

0 1.50 +-0.21 14.30 +- 2.10
1 2.31 +-0.11 20.20 +-1.70
2 2.78 +- 0.43 30.10 +- 3.30
3 3.58 +- 0.13 36.50 +- 1.10
4 4.08 +-0.17 42.70 +- 0.90
5 4.76 +- 0.18 47.10 +- 1.10
6 5.62 +- 0.15 52.90 +- 1.50
7 7.02 +- 0.19 68.80 +- 0.90
8 8.45 +- 0.17 85.20 +- 1.20
9 9.65 +- 0.11 99.40 +- 2.90

The routine we use for fitting is optimize.least_ squares from scipy.optimize. This requires us to
define the function that we want to fit to the data (called fitLine here) and a function (fitChi),
which describes how differences between the data and the fit are treated. (This function is referred
to as a cost or merit function in the SciPy documentation.) The function £itChi depends on the
derivative of fitline, fitLineDiff. You should be able to work out why this is the case when
you have done some error analysis in Maths for Physics I (Phys107) or from the information on
errors given in the Phys106 handbook!

Note that three quotes before and after a section of text are another way of writing comments in
Python - the text between the quotes does not have any effect when the code is run, it serves only
to explain what the code does.

The definition of fitLine tells us that it accepts two arguments, p and x (just as though it were a
mathematical function fitLine(p, z)). In this case, p is a two-component vector, or array. The first
component, p[0], is the intercept of the straight line, the second component, p[1], is its gradient.
That is, p[0]= ¢ and p[1]= m in the expression y = mx + c. Notice again that Python counts
array elements from 0, not 1!

<!-- Student -->
def fitLine(p, x):

rr

Stratight line

rr

10

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

[4]:

[5]:

f = pl0] + pl1l*x
return f

def fitLineDiff(p, x):

rr

Differential of straight line
df = pl1]
return df

def fitChi(p, x, y, xerr, yerr):

rr

Cost function

e = (y - fitLine(p, x))/(np.sqrt(yerr**2 + fitLineDiff (p, x)**2*xerr**2))
return e

Here, we set our first guesses for the values of the intercept and the gradient, run the fit, and
transfer the information on whether the fit has worked to the variable fit0OK.

<!-- Student -->

#

Set initial values of fit parameters, run fit

pInit = [1.0, 1.0]

out = least_squares(fitChi, pInit, args=(xData, yData, xError, yError))
#

£fit0K = out.success

Now we check if the fit has worked, and if it has, transfer the fitted parameters into the array pFinal.
This contains the fitted values of the intercept (pFinal[0]) and the gradient (pFinal[1]). We also
calculate and print out the values of the statistics x? and x2/NDF which describe how well the fitted
straight line matches the data. We calculate the errors on the fitted parameters by inverting the
squared Jacobian matrix to get the covariance matrix covar. The diagonal components of covar
are the squared errors on the fitted intercept (covar[0, 0]) and gradient (covar[1, 11). Finally,
we plot the data with error bars (using the routine plt.errorbar from matplotlib.pyplot) and
draw the fitted line on the plot (using plt.plot).

<!-- Student -->

#

Test <f fit fatled
if not fitOK:

print(" ")

print("Fit failed")
else:

#

get output
pFinal = out.x
cVal = pFinall[0]

11

mVal = pFinal[1]

#

Calculate chis**2 per point, summed chi**2 and chi**2/NDF
chisgArr = fitChi(pFinal, xData, yData, xError, yError)**2
chisq = np.sum(chisqArr)

NDF = nPoints - 2

redchisq = chisq/NDF

np.set_printoptions(precision = 3)

print(" ")

print ("Fit quality:")

print("chisq per point = \n",chisqgArr)

print("chisq = {:5.2f}, chisq/NDF = {:5.2f}." .format(chisq, redchisq))

#

Compute cowvariance

jMat = out. jac

jMat2 = np.dot(jMat.T, jMat)

detJmat2 = np.linalg.det(jMat2)

#

if detJmat2 < 1E-32:
print("Value of determinat detJmat2",detJmat2)
print("Matrix singular, error calculation failed.")
print(" ")
print("Parameters returned by fit:")
print("Intercept = {:5.2f}".format(cVal))
print ("Gradient = {:5.2f}".format(mVal))

print(" ")

cErr = 0.0

mErr = 0.0
else:

covar = np.linalg.inv(jMat2)
cErr = np.sqrt(covar[0, 0])
mErr = np.sqrt(covar([l, 1])
#
print(" ")
print("Parameters returned by fit:")
print("Intercept = {:5.2f} +- {:5.2f}" .format(cVal, cErr))
print("Gradient = {:5.2f} +- {:5.2f}".format(mVal, mErr))
print(" ")
#
Calculate fitted function values
fitData = fitLine(pFinal, xData)
#
Plot data
fig = plt.figure(figsize = (8, 6))
plt.title('Data with fit')
plt.xlabel('x"')

12

plt.ylabel('y")

plt.errorbar(xData, yData, xerr = xError, yerr = yError, fmt='r', \

linestyle = '', label = "Data")
plt.plot(xData, fitData, color = 'b', linestyle = '-', label =
#plt.zlim(1.0, 7.0)
#plt.ylim(0.0, 3.0)
plt.grid(color = 'g')
plt.legend(loc = 2)
plt.show()

Fit quality:
chisq per point =

[0.025 0.891 0.33 0.626 1.556 0.003 2.123 0.535 0.008 0.453]
chisq = 6.55, chisq/NDF = 0.82.

Parameters returned by fit:
Intercept = -1.54 +- 1.74
Gradient = 10.24 +- 0.32

Data with fit
— Fit
100 1 4 Data
a0
B0
oy

+

20 J

20 1

2 4 &]

x

13

1.6.4 Results

The data look to be reasonably well described by a straight line (provided you have found and fixed
the mistakes in the input!). The value of the statistic x2/NDF backs this up. (Values in the range
0.25 < x?/NDF $ < 4% represent good agreement, the closer to one the better.) The gradient of
the straight line and its intercept can be read off from the output of least_squares.

1.6.5 Week 1 exercise 4

Fit a straight line to the data in Table 3 (which is the same as Table 2 with two new points added).
Do this by copying the relevant cells above and pasting them below this cell (use the Edit menu).
Make the changes you need to add the new data points.

Measurement x value Errorin z y value Error in y

1 1.50 0.21 14.3 2.1
2 2.31 0.11 20.2 1.7
3 2.78 0.43 30.1 3.3
4 3.91 0.10 41.5 1.1
5 3.88 0.07 42.7 0.9
6 4.76 0.08 47.1 0.8
7 5.62 0.05 52.9 0.5
8 7.02 0.09 68.8 0.7
9 8.45 0.17 85.2 1.2
10 9.65 0.11 99.4 2.9
11 10.25 0.21 110.5 3.1
12 11.85 0.41 122.1 3.3

Table 3 Extended range of data points

1.6.6 Week 1 exercise 5

Does the straight line still describe the data? Have the values of the gradient or the intercept
changed significantly?

That’s the end of Week 1 for Phys105. You will have a chance to practice using the line-fitting
routine that we have worked with here in Practical Physics I (Phys 106).

14

	Introduction to Computational Physics - Week 1
	Table of contents week 1
	Introduction to week 1
	Installing Python and Jupyter software
	Jupyter Notebooks
	Week 1 exercise 1

	Markdown cells
	Entering text and tables
	Including links
	Figures
	Entering formulae
	Week 1 exercise 2

	Code cells
	An imaginary experiment
	Fitting a straight line to data
	Week 1 exercise 3
	Results
	Week 1 exercise 4
	Week 1 exercise 5

