UNIVERSITE JOSEPH FOURIER-GRENOBLE 1 SCIENCES ET GEOGRAPHIE

THESE

pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE JOSEPH FOURIER

Discipline: Physique

Présentée et soutenue publiquement

Par

CASSE Gianluigi

23 september 1998

The effect of hadron irradiation on the electrical properties of particle detectors made from various silicon materials

Directeur de thèse

V. Comparat

COMPOSITION DU JURY:

D. Bisello - Rapporteur P. Boyer - Président V. Comparat F. Lemeilleur C. Leroy - Rapporteur S. Pospišil

Remerciements

Cette thèse résume mon travail de recherche dans le laboratoire CERN/EP/MIC/SD, auquel je suis arrivé grâce à Paolo Giubellino qui a proposé ma candidature à *l'Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte* (ASP) pour une bourse de deux ans au CERN, et à l 'ASP, qui m'a accepté et financé.

Je tiens à remercier Vincent Comparat, qui a accepté d'être mon directeur de thèse et qui m'a aussi beaucoup aidé dans toutes les démarches administratives.

Le laboratoire du CERN dans lequel j'ai été accueilli et où il s'est déroulé mon travail de recherche est dirigé par François Lemeilleur, avec la précieuse collaboration de Maurice Glaser. Je leur suis reconnaissant pour la masse de connaissances scientifiques et techniques qu'ils m'ont transmises. Plus importants de ça sont les relations humaines qui se définissent pendant des années de travail commun. Avec eux, j'ai trouvé assez agréable le temps passé dans le laboratoire ou autrement ensemble, comme à l'occasion de voyages de travail.

Je remercie Claude Leroy, pour les discussions scientifiques et les nombreux précieux conseils pendant la thèse. J'ai cherché d'apprendre beaucoup de son expérience et de ses connaissances.

Je tiens à remercier les membres de la *Czech Technical University* de Prague, Prof. Stanislav Pospišil et Prof. Bruno Sopko pour les conseils en matière de spectroscopie et de physique du solide, et pour avoir accepté que je fasse partie de leur groupe pendant ces six derniers mois de travail. M. Pospišil nous a aussi conseillé l'utilisation de l'accélérateur Van de Graaf de la Charles University de Prague, dont je remercie toute l'équipe pour son assistance pendant les mesures.

Je remercie les membres de l'*Insitut Jozef Stefan* de Ljubljana, et particulièrement Marko Mikuz et Vladimir Cindro, pour nous avoir mis à disposition le réacteur nucléaire de recherche pour les irradiations en neutrons et pour nous avoir aidé sur place. Merci également a tout le staff du réacteur.

Je remercie Karl Zankel, pour beaucoup de conseils et discussions à propos de mon travail.

Je remercie Dario Bisello, pour avoir accepté de faire partie du jury et M. Pierre Boyer pour avoir accepté de le présider.

Je remercie Eugene Grigoriev, qui a participer, a la prise de centaines de données de collection de charge et avec qui ont a commencer l'étude des détecteurs irradiés avec une LED pulsée.

Plusieurs collègues ont travaillé avec moi, en moment et pour de périodes différentes, et je les remercie tous pour leur collaboration pendant les irradiations et les mesures, comme je remercie tous les membres de la collaboration ROSE, en particulier Steve Watts, avec qui j'ai discuté les résultats et par qui j'ai appris beaucoup en ce qui concerne le dommage de radiation dans les détecteurs au silicium.

Je suis reconnaissant à tous les membres des compagnies qui ont collaboré au projet ROSE et qui ont fourni matériel et compétence pour les essais. En particulier, des nombreuses mesures de caractérisation ont été demandé à ITME, spécialement à Elzbieta Nossarzewska, qui a toujours collaboré avec enthousiasme. Merci encore à ITE pour avoir accepté de participer aux expériences de diffusion de l'oxygène à haute température et à DIOTEC (grâce à l'intéressement de B. Sopko), pour avoir fabriqué des centaines de diodes *mesa*.

Contents

List of figures
List of tables
Introduction
Chapter 1 – Motivation and framework
1.1 The Large Hadron Collider (LHC)
1.2 Physics at LHC
1.2.1 The ATLAS and CMS experiments
1.2.2 The radiation environment
1.3 The ROSE (CERN-R&D 48) collaboration27
Chapter 2 – Basic Features of Silicon Detectors
2.1 General principles of semiconductor physics
2.2 The p-n junction
2.3 Silicon mono-crystal fabrication and detector manufacturing
2.3.1 Crystal growth methods 41
2.3.2 Detector manufacturing
2.4 Operation of silicon detectors
2.4.1 Biasing features
2.4.2 Particle detection
Chapter 3 – Radiation damage effects
3.1 The radiation damage mechanism54
3.2 Changes in detectors properties
3.2.1 Reverse Current
3.2.2 Effective doping concentration (N_{eff})
3.2.3 Charge Collection Efficiency69
Chapter 4 – Experimental methods
4.1 C-V measurements
4.2 I-V measurements
4.3 Charge Collection Measurements

4.3.1 β particles	
4.3.2 Low range particles: α particles and low energy protons	
4.3.3 Red light	
4.4 Carrier lifetime measurement	93
4.5 Irradiation facilities	95
4.4.1 Proton Irradiation Facility	95
4.4.2 Neutron Irradiation Facility	

Chapter 5 – Materials

5.1 Impurities	
5.1.1 Measurement techniques of the impurity concentration	100
5.1.2 Introduction of impurities in the silicon ingot	101
5.1.3 The impurity diffusion experiment	102
5.1.4 Neutron transmutation doping of silicon	
5.2 Overview of the materials	109
5.3 Devices	
Chapter 6 – Experimental results	
6.1 Diodes before irradiation	114
6.2 Proton irradiations	116
6.2.1 N_{eff} as a function of the fluence	116
6.2.2 N_{eff} as a function of the time after irradiation	
6.2.3 Reverse current as a function of the fluence	122
6.3 Neutron irradiations	124
6.3.1 N_{eff} as a function of the fluence	127
6.3.2 N_{eff} as a function of the time after irradiation	131
6.3.3 Reverse current as a function of the fluence	132
6.4 Charge collection efficiency as a function of the fluence	134
6.5 Discussion	

Chapter 7 – Evolution of the active volume in irradiated	l detectors
7.1 Charge collection from low range particle illumination	142
7.2 Charge collection from red LED light illumination	147
7.3 Discussion	
Conclusion	165
APPENDIX A - Experimental set-ups	167
APPENDIX B - The diffusion theory in silicon	171
References	174

List of figures

Chapter 1

Fig. 1	The LEP/LHC tunnel map and (b) the CERN accelerator system	20
Fig. 1.1	Cross section of the LHC/LEP tunnel. LEP magnet is hosted above the	
	double-coil LHC magnet	21
Fig. 1.2	Cross section for various processes expected in proton-proton interactions	
	as a function of the centre-of-mass energy \sqrt{s}	23
Fig. 1.3	(a) The CMS detector (b) The ATLAS detector.	25
Fig. 1.4	(a) The CMS and (b) ATLAS inner trackers with Si pixels, SemiConductor	
	(Si) Tracker, and TRT (Transition Radiation Tracker)	26
Fig. 1.5 -	Neutron and charged fluxes per year at different radii in the CMS tracking	
	cavity	27

Fig. 2.1	Schematic band diagram for (a) n-type and (b) p-type semiconductor. $E_D = energy$	
	level of the donor impurity; $E_A = energy$ level of the acceptor impurity	2
Fig. 2.2	Band diagram of (a) uniformly doped p-type and n-type silicon (b) after	
	the junction formation	3
Fig. 2.3	Schematic energy band diagram of a p-n junction under external bias (a)	
	forward bias (b) reverse bias	5
Fig. 2.4	Ideal I-V characteristic of a silicon diode	7
Fig. 2.5	Processes at an intermediate defect level: (a) generation (b) recombination ((c)
	trapping (d) compensation	
Fig. 2.6	The capacitance-voltage characteristic of a p^+ -n junction)
Fig. 2.7	Depletion region of a p^+ -n junction: (a) $V_1 < V_{FD}$, (b) $V_2 \ge V_{FD}$ 40)
Fig. 2.8	CERN2 mask for planar device production. This mask is adapted to process	
	<i>3" or 4" wafers (internal and external circles respectively).</i>	5

Fig. 2.9	Basic steps for the planar fabrication of a p^+ -n- n^+ detector	6
Fig. 2.10	Basic steps for the mesa fabrication of diodes	7
Fig. 2.11	Effect of the guard ring $(G-R)$ contacting on the delimitation on the electric	
	field region (a) G-R floating (b) G-R biased	49
Fig. 2.12	C-V characteristic of an irradiated planar diode. The decrease of the capacitance	

above full depletion is due to the lateral extension of the depleted volume...... 50

Chapter 3

Fig. 3.1	Diagram of some defects in the silicon crystal lattice due to point defect
	complexes
Fig. 3.2	Picture of a typical recoil-atom track with formation of final highly damaged
	regions (clusters) as a consequence of heavy-particle irradiation [3.2]
Fig. 3.3	Displacement damage cross section as a function of energy for various particle
	<i>in silicon</i> [3.15]
Fig. 3.4	The current characteristic as function of the square root of the reverse bias. The
	reverse current is proportional to the depleted volume until full depletion
Fig. 3.5	Radiation damage constant, α , as a function of time after irradiation for silicon
	detectors irradiated and stored at various temperatures [3.20]63
Fig. 3.6	$N_{eff}(V_{FD})$ as a function of pion fluence [3.28]
Fig. 3.7	Resistivity as a function of fluence (1 MeV neutrons) [3.32] 67
Fig. 3.8	Depletion voltage (normalised to 300 μ m thickness) versus time after irradiation
	at room temperature for various high resistivity silicon detectors [2.6]
Fig. 3.9	Charge collection efficiency as a function of 24 GeV/c proton fluence [3.20] 70
Fig. 3.10	V_{FD} changes as a function of 24 GeV/c proton fluence for detector irradiated at
	various temperatures [3.20]

Chapter 4

Fig. 4.1 (a) $1/C^2$ vs bias for a 200 μ m thick non-irradiated diode. N_{eff} , calculated from

	V_{FD} , is 7.5 · 10 ¹² cm ⁻³ (b) N_{eff} profile vs depth.	73
Fig. 4.2	(a) $1/C^2$ vs bias for a 300 μ m thick non-irradiated low resistivity (180 Ω cm) diode	2.
	The detector breakes down before full depletion. (b) N_{eff} profile vs depth. The	
	average value of N_{eff} corresponds to the nominal resistivity. The calculated V_{FD}	
	<i>is</i> ≈ 1900 V	75
Fig. 4.3	Typical C-V characteristics with the frequency as a parameter for (a) non-irradiat	ed
	and (b) irradiated diodes [4.5].	76
Fig. 4.4	(a) C-V characteristic of an irradiated type-inverted diode. (b) N_{eff} profile	
	versus depth	77
Fig. 4.5	Leakage current as a function of the reverse bias for variously irradiated silicon	
	diodes with floating and biased guard ring. The reverse current for the non	
	irradiated diode is the same with and without G-R	81
Fig. 4.6	The volume reverse current as a function of fluence measured with and without	
	bias on the G-R	82
Fig. 4.7	Generation of carriers along the path of particle tracks and electric field	
	distribution in the silicon diode	83
Fig. 4.8	Ideal pulse shape for (a) electron injection (junction side) and (b) hole injection	
	(ohmic side) of an n-type silicon detector. $V_{FD} \ge V_1 \ge V_2$	86
Fig. 4.9	CC curve as a function of the square root of bias in the case of eta particle	
	Illumination	87
Fig. 4.10) Landau distribution of the energy loss of a MIP in a 300 μm thick silicon	
	detector. The most probable value is ≈ 80 keV	88
Fig. 4.11	Averaged signal pulse shape and integral of the signal induced by eta particles in	
	a 307 µm thick silicon detector	88
Fig. 4.12	2. Energy loss of 1.7 MeV protons in silicon as a function of the path (Bragg's	
	curve) and integrated energy loss as a function of the depletion depth in case of	
	(a) front injection and (b) rear injection	89
Fig. 4.13	Simulated charge collection for front (a) and rear (b) illumination with 1.7 MeV	
	protons in a silicon detector with $V_{FD} = 120$ volts	90
Fig. 4.14	Example of (a) energy loss spectrum and (b) signal pulse shape and integral of the	ıe

	signal of an α particle in a fully depleted silicon diode	91
Fig. 4.15	Ionisation as a function of depth for red (670 nm) light in silicon	92
Fig. 4.16	Comparison between the V _{FD} measurements obtained with the C-V and the β cha	arge
colle	ection (C.C.) methods on the same diode irradiated with 24 GeV/c protons	93
Fig 4.17	(a) Reverse recovery circuit schematic (b) current and (c) voltage waveforms. At	
	$t = 0, \Delta V_d$ is due to the drop on the resistance $R: \Delta V_d = RI_r$.	94
Fig. 4.18	Reverse recovery signal for a non-irradiated planar diode. The minority carrier	
	lifetime is 70 µs	95
Fig. 4.19	Beam relative intensity profile (a) front view (b) 3-d view. X is the horizontal	
	co-ordinate and Y is the vertical co-ordinate.	96
Fig. 4.20	Sketch of the detector alignment in the proton beam	97
Fig. 4.21	Fluence (24GeV/c protons) versus Secondary Emission Chamber (SEC) counts	97

Fig. 5.1	Calculated diffusion profile of P and B for diffusion during 3h at $1200^{\circ}C$ 10	12
Fig. 5.2	Boron and phosphorus concentrations versus depth in a mesa diode, measured by	
	the spreading resistance method 10	4
Fig. 5.3	Phosphorus and boron profiles obtained by SIMS from a mesa sample: (a) junction	
	(p^+) side (b) ohmic (n^+) side	4
Fig. 5.4	Resistivity profile of a mesa diode before and after two successive annealing steps	
	of 1 h at 800 °C in H_2 and normal atmosphere. Measurements performed by	
	<i>ITME</i> 10	5
Fig. 5.5	Oxygen and carbon SIMS profiles in a mesa diode10	5
Fig. 5.6	Calculated concentration profiles for (a) C and (b) Sn in silicon for different	
	temperatures and times	6
Fig. 5.7	Oxygen profile in (a) a mesa detector (3h at 1200 $^{\circ}$ C) and (b) a sample diffused at	
	<i>Technion (20h at 1150 °C)</i> 10	7
Fig. 5.8	Calculated oxygen profile for different diffusion time at 1150 $^{\circ}C$	7
Fig. 5.9	SIMS profile of (a) O and (b) C concentration in O-diffused wafers #8 and #10 10	9

Fig. 5.10 Oxygen and carbon concentration profiles measured by SIMS for material #14	. 110
--	-------

Fig. 5.12	Simulated distribution of the implanted (a) P and (b) B ions for the ohmic and	
	junction side formation in the planar process	. 112

Fig. 6.1	Energy spectra, recorded by an ADC, of β^{-} particles from ¹⁰⁶ Ru in overdepleted (a)
	mesa and (b) planar diodes114
Fig. 6.2	Energy of impinging protons versus ADC channel for mesa and planar non
	irradiated diodes 115
Fig. 6.3	N_{eff} versus fluence for standard (#5) and weakly oxygenated (#6) diodes processed
	<i>by SINTEF</i>
Fig. 6.4	$N_{e\!f\!f}$ versus fluence for standard (#4, #5) and weakly oxygenated (#6) diodes. #4
	is processed by ITE, #5 and #6 by SINTEF 117
Fig. 6.5	N_{eff} versus fluence for standard diodes with a different starting resistivity 118
Fig. 6.6	N _{eff} versus fluence for epitaxial planar n-type diodes (#17, #18, #19) 118
Fig. 6.7	N_{eff} versus fluence for mesa standard (#5) and weakly oxygenated diodes (#6) 119
Fig. 6.8	N_{eff} versus fluence for mesa epitaxial (a) n-type and (b) p-type diodes
Fig. 6.9	Comparison of N_{eff} versus fluence between planar and mesa diodes: (a) standard
	FZ and (b) epitaxial diodes 120
Fig. 6.10	$N_{\rm eff}$ versus annealing time (room temperature equivalent) for planar and mesa
	diodes made from materials #5 and #6 and for two different final fluences: (a)
	$1.1 \cdot 10^{14} \text{ cm}^{-2}$, (b) $1.9 \cdot 10^{14} \text{ cm}^{-2}$. Picture (c) is the same as (b)but plotted in
	logarithmic scale to evidence the beneficial annealing (irradiation April '97)121
Fig. 6.11	N_{eff} versus annealing time (room temperature equivalent) for planar and
	mesa diodes made from materials #5 and #6. The final fluence is $1.4 \cdot 10^{14}$ cm ⁻² .
	The plot (b) in logarithmic scale evidences the beneficial annealing (irradiation
	June '97) 121

Fig. 6.12	$N_{e\!f\!f}$ versus annealing time (20 °C equivalent) for planar and mesa diodes made from
	epitaxial materials (#17 to #19). The final fluence is $1.8 \cdot 10^{14}$ cm ⁻² . The plot (b) in
	logarithmic scale evidences the beneficial annealing (irradiation August '97) 122
Fig. 6.13	Reverse leakage current versus fluence for planar diodes made from standard
	materials with different resistivities (#1 and #2) 123
Fig. 6.14	I_{vol} versus fluence for planar diodes made from FZ materials #4, #5 and #6124
Fig. 6.15	I_{vol} versus fluence for planar diodes made from epitaxial materials #17, #18
	<i>and #19</i>
Fig. 6.16	I_{vol} versus fluence for mesa diodes from the same standard silicon wafer (#5) and
	from a weakly oxygenated wafer (#6)124
Fig. 6.17	V_{FD} versus time at 80 °C for non-inverted standard (#3) and jet oxygenated (#11)
	diodes after irradiation 125
Fig.6.18	Comparison between V_{FD} measured after a fluence of $1 \cdot 10^{14}$ cm ⁻² for three pairs of
	diodes either submitted successively to 7 irradiations and annealing steps (circled
	points) or irradiated directly to the final fluence and annealed in one step only.
	Each annealing step is 4 min. at 80 °C 126
Fig. 6.19	Comparison between V_{FD} as a function of the fluence measured ≈ 30 min. after
	irradiation and at the end of the beneficial annealing for two similar detectors 126
Fig. 6.20	$N_{e\!f\!f}$ versus fluence for planar diodes made from standard (#5) and O-diffused
	(#8,#9 and #10) silicon. The diffusion time of oxygen at 1150 $^\circ\!C$ is indicated in
	the pictures
Fig. 6.21	N_{eff} versus fluence for planar diodes made from epitaxial materials (#15) 128
Fig. 6.22	Comparison of N_{eff} versus fluence for planar diodes made from O diffused FZ
	(#9) and epitaxial materials (#15)128
Fig 6.23	Comparison of N_{eff} versus fluence between standard (#5) and NTD diodes (#23
	#24)
Fig. 6.24	$N_{e\!f\!f}$ versus fluence for planar diodes made from FZ low resistivity standard (#3) and
	<i>jet oxygenated (#11) silicon.</i>
Fig 6.25	N_{eff} versus fluence for planar diodes made standard low resistivity silicon #3 and tin
	enriched low resistivity silicon #13 129

Fig. 6.26	$N_{e\!f\!f}$ as a function of the fluence for planar diodes made from standard (#5),
	carbonated (#7) and jet-oxygenated (#12) silicon
Fig. 6.27	$N_{e\!f\!f}$ versus fluence for planar diodes made from MACOM 100 μm epitaxial silicon
	#14 (a) $5x5 \text{ mm}^2$ square diode (b) 1.36 cm ² round device
Fig. 6.28	N_{eff} as a function of the annealing time at 60 °C for planar diode made from
	standard (#5) and O-diffused (#8, #9 and #10) silicon. Irradiation fluence:
	$1.5 \cdot 10^{14} cm^{-2}$. 131
Fig. 6.29	$N_{\rm eff}$ as a function of the time after irradiation for planar and mesa diode made from
	standard material (#5) and planar diodes made from jet-oxygenated silicon (#11):
	(a) full scale (b) limited scale to evidence the beneficial annealing
Fig. 6.30	I_{vol} as a function of fluence for planar diodes made from standard (#5) and oxygen
	<i>diffused (#9) wafers.</i> 132
Fig. 6.31	I_{vol} as a function of fluence for planar diodes made from similar epitaxial wafers
	(#15)
Fig. 6.32	I_{vol} as a function of fluence for planar diodes made from low resistivity (a) tin
	enriched (#13) and (b) standard (#3) FZ wafers. The reverse current has been
	annealed to 10 days equivalent at room temperature
Fig. 6.33	I_{vol} as a function of fluence for planar diodes made from standard (#5), jet-
	oxygenated (#12) and carbonated (#7) materials
Fig. 6.34	I_{vol} as a function of fluence for planar diodes made from similar epitaxial wafers
	(#14)
Fig. 6.35	Charge collection efficiency versus proton fluence for planar diodes made from
	Standard (#2, #5) and weakly oxygenated (#6) materials
Fig. 6.36	Comparison between (a) β values, (b) $\Phi_{inv}/N_{eff}(0)$ and (c) g_y for various sets of mesa
	and planar diodes made from a similar material and irradiated with protons (labels
	# refer to Table 6.1) 137
Fig. 6.37	Comparison between eta values for neutron irradiated diodes made from various
	materials. Measurements performed (a) after 30-60 minutes irradiation and (b)
	after an annealing step of 4' at 80 °C. The labels # refer to Table 6.2 139
Fig. 6.38	β versus resistivity for neutron irradiated diodes made from various materials. 140

Fig. 7.1	Simulated specific energy loss of low-range protons in silicon
Fig. 7.2	Charge collection versus $V^{1/2}$, recorded by an ADC, for (a) front and (b) rear
	illumination of a non-irradiated silicon detector with protons of different
	energies
Fig. 7.3	CCE as a function of $V^{1/2}$ for diodes of different thicknesses irradiated by protons
	to $\approx 7.5 \ 10^{13} \ \text{cm}^{-2}$. The α source was positioned on the rear side. Diode thicknesses:
	(a) 147µm, (b) 303µm, (c) 503µm
Fig. 7.4	Charge collection (CC) versus $V^{1/2}$ for variously irradiated diodes illuminated by
	protons of different energies from a Van de Graaf accelerator [6.1]. The CC is
	recorded by an ADC in the case of front injection (column (a)) and rear injection
	(column (b)) 145
Fig. 7.5	V_{80} as a function of fluence for front and rear injection of low range protons:
	(a) 1 MeV (b) 2.5 MeV protons
Fig. 7.6	Shape of the LED pulse measured with a PM
Fig 7.7	CCE as a function of $V^{1/2}$ for front and rear illumination of non-irradiated (a)
	<i>n-type and (b) p-type diodes.</i>
Fig. 7.8	Signal pulse shape in a non-irradiated n-type diode. (a) Front illumination (b)
	Rear illumination from 80 to 95 volts (c) Rear illumination from 95 to 150 volts.
	$V_{FD} = 105 \ volts.$
Fig. 7.9	Peaking time versus $V^{1/2}$ for a non-irradiated and irradiated (low fluences) diodes
	for front LED illumination 150
Fig. 7.10	<i>Peaking time</i> (t_p) <i>versus</i> $(V/V_{FD})^{1/2}$ <i>for rear injection in</i> (<i>a</i>) <i>n</i> -type and (<i>b</i>) <i>p</i> -type
	non irradiated diodes 151
Fig. 7.11	<i>CCE</i> versus $V^{1/2}$ for front and rear illumination of n-type irradiated (non-inverted)
	<i>diodes:</i> (a) $\Phi = 1.0 \cdot 10^{12} \text{ cm}^{-2}$ ($\Phi < \Phi_{inv}$), (b) $\Phi = 1.5 \cdot 10^{13} \text{ cm}^{-2}$ ($\Phi < \Phi_{inv}$) 151
Fig.7.12	CCE versus $V^{1/2}$ for an n-type diode irradiated up to $\Phi = 1.0 \cdot 10^{14} \text{ cm}^{-2}$ ($\Phi > \Phi_{inv}$).
	(a) rear illumination (b) front illumination

- Fig. 7.15 Signal pulses for 1.10¹⁴ cm⁻² irradiated diode illuminated by red LED light.
 (a) Front illumination: 10-40 V (b) Front illumination: 45-75 V
 (c) Front illumination: 80-180 V (d) Rear illumination 5-150 V. V_{FD} = 70 volts... 153

- Fig. 7.21 Peaking time of the second peak (t_{pf}) as a function of (V/V_{FD})^{1/2} for front illumination of three heavily irradiated diodes: (a) 1.110¹⁴ cm⁻² (b)1.710¹⁴ cm⁻²
 (c) 2.910¹⁴ cm⁻².
 158

Fig. 7.26	Concentration of free majority carriers (holes) as a function of depth for heavily	
	irradiated detectors at different values of the applied bias	162
Fig. 7.27	Simulated values [7.6] of the electric field at 100, 150 and 200 μm depths as a	
	function of $V^{1/2}$	163

List of tables

Chapter 1

Table 1.1 Annual fluxes expected in silicon due to various damaging particles, expressed as the 1 MeV Equivalent neutron flux as a function of radial position for the ATLAS inner tracker. Flux units of the damaging particles are 10¹³ (1 MeV) neutrons cm⁻² yr⁻¹.

Chapter 2

Table 2.1	Difference between the bottom of the conduction band (E_c) , the top of the valence
	band (E_V) and the impurity level (E_L) for the most important donors and acceptor is
	silicon

Table 3.1	Hardness factor for the normalisation to the 1MeV neutron fluence for the two	
	facilities used for the irradiation 5	9
Table 3.2	A few defect reactions in silicon. The subscript i stands for interstitial, s for	
	substitutional, I for Si interstitial, V for vacancy, C for carbon, O for Oxygen and	D
	for phosphorus	51
Table 3.3	Identified defect states with their energy levels in eV	1
Table 3.4	Fitting parameters for the annealing at room temperature of the reverse current	

Chapter 4

Table 4.1 Different components of the reverse current.80

Chapter 5

Table 5.1	Diffusion parameters for boron and phosphorus in silicon found by different	
	workers [5.13]	3
Table 5.2	Diffusion parameters and solubility for O, C and Sn in silicon [5.13] 10	6
Table 5.3	Tested silicon materials. Labels (*) indicate the analysis method used for the	
	impurity concentrations: ^(a) Fourier Transform Infrared Spectroscopy (FTIR) at	
	room temperature, ^(b) FTIR at 5K, ^(c) Secondary Ion Mass Spectrometry	
	(SIMS) profiling and ^(d) SIMS bulk measurement	3

Chapter 6

Table 6.1 Radiation hardness parameters extracted from the proton irradiation data...... 136
Table 6.2 Radiation hardness parameters extracted from the neutron irradiation data: measurements performed (a) 30-60' after irradiation and (b) after 4' at 80 °C... 138

Chapter 7

Table 7.2	Values of the velocity and of the electric field in the quasi-neutral bulk (QNB)
	bulk
Table 7.3	Values of the v_M and E_M for three heavily irradiated diodes
Table 7.4	Comparison between N_{eff} for three heavily irradiated diodes calculated using the
	<i>C-V and the CCE methods.</i> 162