Detectors for sLHC

G. Casse University of Liverpool Group 6th December 2007

- Proposed Tracker Layout and Simulations (Radiation and Occupancy)
- Sensor and FE Electronics R&D
- Microstrip Module and Engineering Concepts
- Power, DCS, Opto-electronics, Services, Cooling, ...
- Conclusions

Detectors for sLHC

G. Casse University of Liverpool Group 6th December 2007

- Proposed Tracker Layout and Simulations (Radiation and Occupancy)
- Sensor and IE Electronics R&D
- Micro-strip Module and Engineering Concepts
- Power, DCS, Read-out, Services, Cooling, …
- Conclusions

The European strategy for particle physics

http://council-strategygroup.web.cern.ch/council-strategygroup/

"The LHC will be the energy frontier machine for the foreseeable future, maintaining European leadership in the field; the highest priority is to fully exploit the physics potential of the LHC, resources for completion of the initial programme have to be secured such that machine and experiments can operate optimally at their design performance. A subsequent major luminosity upgrade (SLHC), motivated by physics results and operation experience, will be enabled by focussed R&D; to this end, **R&D** for machine and detectors has to be vigorously pursued now and centrally organized towards a luminosity upgrade by around 2015."

Why Discuss Upgrading the LHC Already?

Because we have to start the R&D now

Trigger Electronics:

- Most front-end electronics can probably stay but need faster clock speed and deeper pipelines
- Extensions to trigger capability required
- Need to maintain L1 output rate (more data per event)
 - Must upgrade detector backend electronics
 - increase bandwidth to deal with more data per event
 - Modify trigger algorithms to deal with high occupancy (and increase thresholds)

<u>L-Ar:</u>

- **Performance degradation due to high rates in EndCap.**
- (High ionisation gives big voltage drops, electronic is inaccessible, L-Ar boiling!) TileCal:
- Some radiation damage of scintillators
- Challenging calibration with strong increase in pile-up

Muon systems:

- Degradation in performance due to high rates, in particular in the forward regions:
 - Will need additional shielding for forward region
 - May need beryllium beampipe
 - Aging/radiation damage needs confirmation for SLHC operation
- Huge expense and disruption if chambers need replacement Inner Detector tracking systems:
- The entire Inner Detector will have to be rebuilt

ATLAS Inner Detector Replacement

To keep ATLAS running more than 10 years the inner tracker will have to go ... (Current tracker designed to survive up to 730 fb⁻¹ \approx 10Mrad in strip detectors) For the luminosity-upgrade the new tracker will have to cope with:

- much higher occupancy levels
- much higher dose rates

To build a new tracker for 2015, major R&D programme already needed.

Timescales:

- R&D leading into a full tracker Technical Design Report (TDR) in 2010
- Construction phase to start immediately TDR completed and approved.

The intermediate radius barrels are expected to consist of modules arranged in rows with common cooling, power, clocking and cooling. The TDR will require prototype super-modules/staves (complete module rows as an integrated structure) to be assembled and fully evaluated All components will need to demonstrate unprecedented radiation hardness

- Build a replacement tracker for $\mathcal{L} = 10^{35} \text{ cm}^{-2} \cdot \text{s}^{-1}$ with equal or better performance, AND L1 Trigger Capability
- To do so, solve several very difficult problems
 - deliver power probably requiring greater currents
 - develop sensors to tolerate radiation fluences ~10x larger than LHC
 - construct readout systems which can also contribute to the L1 trigger using tracker data
 - ...and so on...
- It is probably as difficult a challenge as the original LHC detectors were in 1990
 - or possibly harder...

November 2007

Marcello Mannelli CMS SLHC Upgrade RD50 Workshop

A look to the plans of CMS

Planning an Upgrade Project

- To define the project scope we need (to iterate to establish)
 - …some idea of timescale
 - ... assessment of resources expected to be available, and those needed
 - Including importantly- likely effort
 - with time profile
- Planning assumption: ~10 years from now to operational upgraded tracker, with possible breakdown:
 - 5 years R&D
 - 2 years Qualification
 - 3 years Construction
 - 6 months Installation and Ready for Commissioning
- NB experience tells us that system approach and attention to QA are important considerations from a very early stage

Marcello Mannelli CMS SLHC Upgrade

RD50 Workshop

Current ATLAS Inner Tracker Layout

Pixels (50 μ m × 400 μ m): 3 barrels, 2×3 disks

- Pattern recognition in high occupancy region
- Impact parameter resolution (in 3d)

Radiation hard technology: n⁺-in-n Silicon technology, operated at -6°C

Strips (80 μ m × 12 cm) (small stereo angle): "SCT" 4 barrels, 2×9 disks

- pattern recognition
- momentum resolution

p-strips in n-type silicon, operated at $-7^{\circ}C$

- TRT 4mm diameter straw drift tubes: barrel + wheels
- Additional pattern recognition by having many hits (~36)
- Standalone electron id. from transition radiation

30 cm < r < 51 cm

55 cm < r < 105 cm

Proposed Upgrade Layout

New SLHC Layout Implications

Strawman 4+3+2

Radiation Levels

- With safety factor of two, need pixel b-layer to survive up to 10¹⁶n_{eq}/cm²
- Short microstrip layers to withstand 9×10¹⁴n_{eq}/cm² (50% neutrons)
- Outer layers up to 4×10¹⁴n_{eq}/cm² (and mostly neutrons)
 - → Issues of thermal management and shot noise. Silicon looks to need to be at ~ -25°C (depending on details of module design).
 - → High levels of activation will require careful consideration for access and maintenance.

Issues of coolant temperature, module design, sensor geometry, radiation length, etc etc all heavily interdependent.

Quarter slice through ATLAS inner tracker Region, with 5cm moderator lining calorimeters. Fluences obtained using FLUKA2006, assuming an integrated luminosity of 3000fb⁻¹.

Detectors for sLHC

G. Casse University of Liverpool Group 6th December 2007

- Proposed Tracker Layout and Simulations (Radiation and Occupancy)
- Sensor and FE Electronics R&D
- Microstrip Module and Engineering Concepts
- Power, DCS, Opto-electronics, Services, Cooling, ...
- Conclusions

$\underbrace{\textbf{B-layer: Replacement} \rightarrow Upgrade}_{\bullet}$

- ATLAS considers to have a B-layer replacement after ~3 year of integrated full LHC luminosity (2012) and replace completely the Inner Tracker with a fully silicon version for SLHC (2016).
- The <u>B-layer replacement</u> can be seen as an intermediate step towards the full upgrade. Performance improvements for the detector (here some issues more related to FE chip):
 - **Reduce radius** \rightarrow Improve radiation hardness (\rightarrow 3D sensors, or possibly, thin planar detectors, diamond, gas, ...?)
 - Reduce pixel cell size and architecture related dead time (→ deign FE for higher luminosity, use 0.13 µm 8 metal CMOS)
 - Reduce material budget of the b-layer (~3% $X_0 \rightarrow 2.0 \div 2.5\% X_0$)
 - increase the module live fraction (→ increase chip size, > 12×14 mm²) possibly use "active edge" technology for sensor.
 - Use faster R/O links, move MCC at the end of stave
- The <u>B-layer for the upgrade</u> will need radiation hardness (10¹⁵ → 10¹⁶ n_{eq}/cm²) and cope with detector occupancies up to (× 15)

New Pixel FE-ASIC Design

Design of a new Front-End chip (FE-I4) is going on as a Collaborative Work of 5 Laboratories: Bonn, CPPM, Genova, LBNL, Nikhef

- ♀ FE-I4 tentative schedule
 - 9/2007: Architecture definition
 - 10/2007: Footprint frozen
 - 01/2008: Initial Design review
 - 12/2008: Final Design review
- Some prototype silicon made of small blocks and analog part of the pixel cell in 0.13 μm.

Main Parameter	Value	Unit
Pixel size	50 x 250	μm^2
Input	DC-coupled negative	
	polarity	
Normal pixel input	300Ö 5 00	fF
capacitance range	\frown	
In-time threshold	4000	e
with 20ns gate		
Two-hit time	400	ns
resolution		
DC leakage current	100	nA
tolerance	\frown	
Single channel ENC (300	e
sigma (400fF)		
Tuned threshold	100	e
dispersion		
Analog supply	10	μA
current/pixel		
@400fF		
Radiation tolerance	200	MRad
Acquisition mo de	Data driven with time	
	stamp	
Time stamp	8	bits
precision		
Single chip data	160	Mb/s
output rate		

FE-I4 (B-layer Replacement) Specifications: main parameters

Development, Testing and Industrialization of Full-3D Active-Edge and Modified-3D Silicon Radiation Pixel Sensors with Extreme Radiation Hardness Results, Plans.

LAS Upgrade Document	rade Document Institute Document No.		Page: 1 of 13
		Modified: 08/03/2007	Rev. No.: 2.00

Alternative geometry with double sided electrodes

IR scan 3D- SCstrips/ Freiburg

200

Diamond Pixel Modules for the High Luminosity

ATLAS Inner Detector Upgrade

ATLAS Upgrade Document No:	Institute Document No.	Created: 11/05/2007	Page: 1 of 12
		Modified:	Rev. No.: 1.0

Iarge band gap and strong atomic bonds promise fantastic radiation hardness

Solve leakage current and low capacitance both give low noise

♥3 (1.5) times better mobility and 2x better saturation velocity give fast signal collection

Solution energy is high: MIP \approx 2x less signal for same X₀ of SI

- Diamond: ~13.9ke⁻ in 361 μ m (140 enc; bare threshold ~1500e)
- \bullet SI: ~22.5 ke in 282 μm
- Grain-boundaries, dislocations, and defects can influence carrier lifetime, mobility, charge collection distance and position resolution
 Available Size ~2 x 6 cm² (12cm diameter wafer; ~2mm thick)

Some Compilation Plots

Planar n-in-n or n-in-p: 3D- sensors: **Diamond:**

My comments

Conservative solution but high operating voltages: can thin help? **Highest signal (Efficiency in columns? Commercial fabrication?)** Lower currents, low noise (Cost? Uniformity?)

Comparisons of minimum ionising particle (m.i.p.) CCE(V) and S/N after 10¹⁶n_{eq}/cm² needed

Innermost Detectors at Current LHC LHC vertex detectors all use n⁺ implants in n⁻ bulk: Because of advantages after heavy irradiation from collecting electrons on n⁺ implants, the detectors at the LHC (ATLAS and CMS Pixels and LHCb Vertex Locator) have all adopted the n⁺ in n⁻ configuration for

- doses of 5 10 × 10¹⁴ n_{eq} cm⁻²
- Requires 2-sided lithography

Motivations for P-type

Starting with a p⁻-type substrate offers the advantages of single-sided processing while keeping n⁺-side read-out:

- Processing Costs (~50% cheaper).
- Greater potential choice of suppliers.
- High fields always on the same side.
- Easy of handling during testing.
- No delicate back-side implanted structures to be considered in module design or mechanical assembly.

So far, capacitively coupled, polysilicon biased devices fabricated to ATLAS mask designs with Micron Semiconductor (UK) Ltd (full size: 6cm×6cm), CNM Barcelona (miniature: 1cm×1cm), ITC Trento (miniature: 1cm×1cm) and Hamamatsu Photonics (1cm×1cm and orders placed for 10cm×10cm ATLAS prototypes)

N-side read-out for tracking in high radiation environments?

Schematic changes of Electric field after irradiation

Effect of trapping on the Charge Collection Efficiency (CCE)

 $Q_{tc} \cong Q_0 exp(-t_c/\tau_{tr}), 1/\tau_{tr} = \beta \Phi.$

Collecting electrons provide a sensitive advantage with respect to holes due to a much shorter t_c . P-type detectors are the most natural solution for *e* collection on the segmented side.

N-side read out to keep lower t_c

More realistic simulation (ISE-TCAD) of E of an irradiated detector.

P-type devices have always the high field region on the right side.

N-side

Effect of trapping on the Charge Collection Distance

$$Q_{tc} \cong Q_0 \exp(-t_c/\tau_{tr}), \ 1/\tau_{tr} = \beta \Phi.$$
$$v_{sat,e} \ge \tau_{tr} = \lambda_{av}$$

 $\beta_e = 4.2E - 16 \text{ cm}^{-2}/\text{ns}$

 $\beta_{\rm h} = 6.1 \text{E} - 16 \text{ cm}^{-2}/\text{ns}$

From G. Kramberger et al., NIMA 476(2002), 645-651.

After heavy irradiation thin detectors should have a similar CCE as thicker ones.

 $\lambda_{av} (\Phi=1e14) \cong 2400 \mu m$

 $\lambda_{av} (\Phi = 1e16) \cong 24 \mu m$

Despite the rather poor pre-irradiation characteristics, all the devices (~300µm thick) show a remarkable robustness, after irradiation, both in term of breakdown voltage and noise. A value of about 34 ADC counts was the typical one measured with similar geometry standard ATLAS non-irradiated miniature sensors.

Extremely good performances in term of charge collection after unprecedented doses (1., 3.5., and 7.5 10¹⁵ p cm⁻²) are shown.

Another effect that has changed the way to regard at the reverse annealing has been measured on these devices. The reverse annealing has been always considered as a possible cause of early failure of Si detectors in the experiments if not controlled by mean of low temperature (not only during operations but also during maintenance/shut down periods). This was originated by accurate measurements of the annealing behaviour of the full depletion voltage in diodes measured with the CV method.

Expected changes of full depletion voltage with time after irradiation (as measured with the C-V method) for detector irradiated to 7.5 10¹⁵ p cm⁻².

Please notice that according to CV measurements the so called V_{FD} changes from <3kV to >12kV!

Predictions from RD48 parameters for Oxygen enriched devices (best scenario: after 7 RT annealing years the V_{fd} goes from ~2800V to ~12000 V!

7.5 10¹⁵ p cm⁻²

Initial V_{FD} ~ 2800V

Final ~12000 V!

Results with neutron irradiated Micron detectors

Now µ-strip detector CCE measurements up to 1x10¹⁶ n cm⁻²!!

Charge collection efficiency vs fluence for micro-strip detectors irradiated with n and p read-out at LHC speed (40MHz, SCT128 chip).

Comparison of CCE with 140µm and 300µm thick detectors from Micron irradiated to various n fluences, up to 1x10¹⁶ cm⁻²!

Comparison of CCE with 140µm and 300µm thick detectors from Micron irradiated to various n fluences, up to 1x10¹⁶ cm⁻²!

 $3x10^{15} n_{eq} cm^{-2}$

Operational parameters: temperature history

Essential to keep at -20/25°C during operation for reducing the runaway probability and shot noise increase. But in shut down period? The previous slides on annealing were taken with rough granularity. A detailed study of the annealing has been performed, and the results are quite impressive, in term of recovery of charge collection with neutron irradiated detectors.

Microstrip Front-end ASIC (ABCn) Design Status

Front-End	Opt. short strip done Layout started	33mA/chip ✓ 750enc (2.5cm strips) Final S/N > 10 ✓
Back-End	Main change in DCL block to handle 160MHz	92mA/chip at 2.5V estimated
Powering	Integrated shunt regulators possible	Current limits to impose uniformity
Floor Plan	First Checks now	7.5mm by 6±1mm
P&R	Examples with pipeline and derandomizer OK	
Submission	Scheduled January 2008	Deliver by April

Thin Sensors and Vertical Integration

Solid Liquid Interdiffusion (SLID), IZM Munich

1) Low I_leak, low V_dep

- 2) Large live-fraction
- 3) SLID interconnection
- 4) 3D integration

R. Nisius

Conducted by: Bonn, Dortmund, MPI, Oslo, Interon, IZM

Detectors for sLHC

G. Casse University of Liverpool Group 6th December 2007

- Proposed Tracker Layout and Simulations (Radiation and Occupancy)
- Sensor and FE Electronics R&D
- Microstrip Module and Engineering Concepts
- Power, DCS, Opto-electronics, Services, Cooling, ...
- Conclusions

Current SCT ATLAS Module Designs

ATLAS Tracker Based on Barrel and Disc Supports

Effectively two styles of modules (with 2×6cm long strips)

Forward Modules (Hybrid at module end)

Super-LHC Double Sided Module

striplets

The Multi-layer kapton circuit in green is the "hybrid" which busses signals to/from/between the microchips and provide the electrical services to the front end electronics Wire bonds connect the electronics to the hybrid and provide the high density connections down from the front-end to the 4 pad rows on the detectors

New HPK Sensor ATLAS07 Order

New Hybrid Designs

- Multi-layer kapton high density circuit on high thermal conductivity (carbon-carbon) baseboard
- FE ASIC microchip interconnect and high speed data transmission
- Redundancy scheme designed to allow single FE chip failure without loss of read-out from neighbouring ASICs

- · 2 "fingers" per hybrid populated with 2 columns of ABC-Ns (20 ASICs per finger, 40 ASICs total)
- Chip-to-chip "direct" token and data passing added
- Provisional Redundancy scheme implemented on the hybrid
- · Hybrid is electrically one object
- 4 Layer Kapton (conservative design)
- No tracking under ASIC front-end
- 2 Layers for routing and 2 for Power/Gnd planes
- 100um Track & Gap
- 350um Vias

DCS, Module Power management, CLK/COM and Data buffering may require one or two(?) additional Module Controller ASICs per hybrid.

Review of Hybrid concept

Detail

- Designed to match to a single sensor of 99mm x 99mm
- 2 'fingers' per hybrid populated with 2 columns of 10 ABCNs (40 total)
- 4 Cu Layers with Kapton dielectrics
- Standard build (to maximise yield)
 - 100µm track and gap
- Wire bonding directly from ABCN to sensor
 - Eliminates the need for pitch adaptors
 - ABCN die size is fixed to 7.5mm width to allow this
 - Length is still unknown (currently 8.2mm)

A. Greenall

MCC: Module Controller Chip

WP4 SLHC Upgrade Hybrid, RAL 31st October 2007

HEP R&D on Vertical (3D) Integration

- Work already underway in Germany and US
- UK has purchased RD50 wafers for trials adding polyimide layers to Micron sensors
- Survey of companies for MCMD in progress

- 1) Low I_leak, low V_dep
- 2) Large live-fraction
- 3) SLID interconnection
- 4) 3D integration

Conducted by: Bonn, Dortmund, MPI, Oslo, Interon, IZM

Double-sided Hybrid Designs - KEK

Four hybrids/module, four connectors/module square sensors (9.754 cm x 9.754 cm)

SLHC module - Optimization

FEA thermal analyses using ANSYS

Need cooling from both ends (current ATLAS single-ended cooling)

(2-dimensional calculation)

0.1mm thick thermal grease around cooling pipe (2W/m/K)
Dead air between sensor and hybrid (0.024W/m/K)

Individual Module - Direct Mounting

- 3rd "point" is defined by the pipe
- Cooling block is set with 2 fixation points on the pigtail side
- 1 bracket is holding 2 neighboring modules
- The bottom left pipe is embedded in the brackets and must be assembled before the module.

2 fixed mounting points

Y. Unno

Super-Module Concepts: Super-Frame

Y. Unno

Super-Module on Cylinder

Y. Unno

Stave Module Concept

- The "stave" concept has hybrids glued to sensors glued to cold support
- A first prototype version based on the CDF run-IIb concept but using Stave-06 60 cm ATLAS ASICs already exists
 - A 6-chip wide version (Stave 2007) will use short p-in-n sensors and incorporate many of the final proposed, mechanical, thermal, electrical, serial powering and read-out features.
 I meter, Double sided, 3 cm strip, 30 segments/side 192 Watts
 - The first prototype staves are expected by Autumn this year
 - Stave core fabrication, BeO hybrid design, cooling concepts and automated assembly nearing completion.
 C. Haber
 - 10 chip wide version under development

6 chips wide

2.5 % Xo

-17.5 C Chip/Silicon -23.5 C

-12.6 C Chip/Silicon -13.6 C

-16.7 C Chip/Silicon -17.4 C

Single-sided Concept Bridged hybrid assemblies on cooled support

1.5W/Sensor Max Chip temp: -20.4C Max Silicon Temp: -23.6C Temp Gradient over Si: 1.33C

Possible Demountable Module/Stave Concept (single-sided : Single side Alumina a assembly step) : Carbon Ca

Alumina location tab

Single sided silicon module.

- Alumina and TPG heat spreader, spliced as in ATLAS module.
- Integral precision location washers (holes and slots)
- Carbon Carbon hybrid base, with added non conductive spacers.

Precision Location Washer

1000301010-000200-000

T. Jones

Forward Module Concepts

- As for current ATLAS SCT, Forward Modules likely to require several different wedge shaped sensors
- 5 discs on each side with outer radius 95cm and inner radii from 30cm

Can consider super-modules/staves or individual modules as now

C. Lacasta

Detectors for sLHC

G. Casse University of Liverpool Group 6th December 2007

- Proposed Tracker Layout and Simulations (Radiation and Occupancy)
- Sensor and FE Electronics R&D
- Microstrip Module and Engineering Concepts
- Power, DCS, Opto-electronics, Services, Cooling, ...
- Conclusions

Powering Issues

V_{ABC-N} = 2.5 V; I_{Hybrid} = 2.4 A; 20 hybrids. Low V + High I → I²R losses in cables (Want power transmission at High V + Low I)

Serial Powering: n=20; $I_{H} = I_{PS} = 2.4 \text{ A}$; $V_{PS} = nV_{ABC-N} = 50 \text{ V}$ Also saves factor ~8 in power cables/length over SCT

- Need detailed studies of failure modes and recovery

DC-DC Conversion : n=20; g =20; I_{PS} = n/g I_{H} = 2.4A; V_{PS} = g V_{ABC-N} = 50V Parallel powering also saves factor ~8 in power cables as for Serial Powering

- Issues with switched capacitors (noise?) and need for custom design to get large g (Independent powering with DC-DC costs too many cables)

Total Microstrip Power

	BIS	BOS	ECA	ECB	Total
Power [kW]	71.8	45.7	18.3	18.3	154.2
	47%	30%	12%	12%	

- Going to $P_{chan} = 2mW \rightarrow P_{total} = 120kW$,
- Several contributions missing (SMC, Opto-converter, DCS, etc...)
- Best guess (strips) $P_{total} = 150kW$ within $\pm 40kW$ (2-3×SCT).
- Dominated by barrel (even if BOS shortened).
- Investigating cooling using C₃F₈ (again), C₂F₆ or CO₂
- Reuse of existing services could represent a major challenge

G. Viehhauser

DCS: SLHC- Services

of rows (draft) - SLHC Strawman Layers for barrel:

Layer	# of rows	Radius (mm)
SS layer 1	28	380
SS layer 2	36	490
SS layer 3	44	600
LS layer 1	56	750
LS layer 2	72	950

Numbers not yet available for the ECs

Estimation of 2 interlock temperature sensors per cooling loop \rightarrow 944 NTCs in total

SCT barrel DCS: 48 type 2-DCS cables of (28 pins Milli-Grid) \rightarrow 672 twisted pairs! SCT ECs DCS: 80 type 2-DCS cables of (28 pins Milli-Grid) \rightarrow 1120 twisted pairs!

Barrel SS layers could use the current barrel DCS type 2 for the interlock
 & LS could use part of the current EC DCS type 2.
 → Most probably NOT enough left for the SLHC ECs

Can existing cables be used? What type of connectors required and where?

D. Ferrere

Conclusions

- Activities in many areas still just starting with emphasis on completion and commissioning of current ATLAS Detector
- **Management structure includes Upgrade Steering Group**, Upgrade Project Office and 8 working groups in the area of the tracker replacement alone
- Major recent tracker workshops include: Genoa (18/7/05 20/8/05), Liverpool (6/12/07-8/12/07) and Valencia (10/12/07-12/12/07)
- Some impressive progress, but still plenty to do and not so much time to do it ...

ATLAS Inner Detector Technical Design Report now 10 years old http://atlas.web.cern.ch/Atlas/GROUPS/INNER_DETECTOR/TDR/tdr.html

For more material of past internal meetings see ATLAS *indico* pages http://indico.cern.ch/categoryDisplay.py?categId=350