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Lecture 5 “Particle identification techniques”

Particle identification by global signatures
Muon detection

dE/dx

Time-of-Flight detectors

Cherenkov detectors

Transition radiation detectors



Particle identification from global signatures (recap.)

Electrons & photons:

e track If electron

e shallow E.M.-shower

Charged/neutral hadrons:

o track if charged track
* deep hadronic shower

At low E similar to e/y!

e track in inner tracking detectors
___enot stopped in calorimeter

(only energy deposition from ionisation)

e track In muon detectors



Muon detection: example CMS p-chambers:

Sandwich of iron and detectors: drift-tubes / resistive
parallel plate chambers / cathode strip chambers

Iron cylinders (barrel) and disks (endcap) act as return
yoke for the B-field. (Tracks are bent twice!)

This helps the measurement of the momenta of muons.




Particle ID based on the detectors discussed so far:
Global signatures: , , and (if p > few GeV/c!)

Using tracking (and calorimetry) information:

identify the (from bending direction in the B-field)
identify some by:
—  Mass reconstruction from the decay products
e.g. 7o ln—yy, Kl—o>zxn, ...
—  observation of the displaced decay vertex (e.g. B-hadron decays)

What we would like to do in addition:

Identify more charged hadron species (p/pbar, ©t*, K*,..)
|dentify neutral hadron species (we can’t)
Distinguish electrons from hadrons at low energies

Two basic approaches:

1.

2.

Measure the mass! (identification of charged hadrons species and electrons)
— lonisation energy loss (dE/dx)
—  Cherenkov radiation
—  Time-of-flight measurements
Exploit special energy loss properties of electrons
— Improved longitudinal segmentation of e.m.-calorimeter (not discussed here)
—  Transition radiation




Particle 1dentification from dE/dx

‘ Maccabee & Papworth 1969

In tracking detectors we can measure the ionisation 16
energy loss dE/dx by ionisation.

Bethe-Bloch equation:
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For different particle masses the spectra are
shifted along p.

Exception: Electrons have Bremsstrahlung.

Thus a simultaneous measurement of dE/dx
and p provides information on the mass!



Example: dE/dx OPAL central drift-chamber.
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Time-of-Flight (TOF)
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Combined measurement of At and p provides information on the mass!

« Only works in non-relativistic regime, f<1! (up to a few GeV/c)

For best mass determination we need:

 good time resolution (e.g. using scintillator detectors)

 long path length L

t,: usually taken to be the collision time (from combined timing measurements)

t,: detector typically installed after tracking detectors and before calorimeters.
(longest possible L)



NA49 Time-of-flight detector

NA-49: fixed target experiment for
heavy ion collisions

This allows for long path length:
L~15m!

In addition big scintillator rods have
excellent time resolution:

o (At) ~60 ps!
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Cherenkov radiation:

Photo emission by a charged particle travelling in a Vo> E ,B _ E
dielectric medium with a velocity greater than the particle N thr N

velocity of light in that medium:
Huygens wavelets emitted all along the particles

W _ :
e fop, trajectory form a single wave front under an

Ylight = angle 6, w.r.t. the particle direction:

c/n)At 1
Cosd, = ( / ) =
LCAt  fn
Photon yield:
d*N 1 -
— 27 70 —sin’ @ oc sin? (4.) = 1-(1//n)2 = small when n =~ 1!
2 C
dxd4 A x 102 = mostly blue light!
Medium n-1 0,.. . (p) GeV/e N, (eV'em™)

Both £, and 8, (combined with

Alr 1.000283 1.36° 5.9 0.21 .

[sobutane 1.00217 3.77° 2.12 0.94 p) can be used for partICIe ID
Aerogel 1.0065 6,51° 1.23 4.7

Aerogel 1.055 18.6° 0.42 37.1 n values can be chosen to get

Water 1.33 41.2° 0.16 160.8 particle ID in a particular range of

Quartz .46 46.7° 0.13 196.4 momental!




Threshold Cherenkov detector
Example: Belle Aerogel Cherenkov Counter (ACC)
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Ring Imaging Cherenkov Detectors (RICH)

6, can be measured from Cherenkov rings. (two ways to produce rings)

A charged particle traversing a thin layer of a
radiator material will produce a ring of photons.

Suitable for high n materials (high photon yield)

detector surface spherical mirror

A spherical mirror will produce a ring- |:>
shaped image of the Cherenkov cone.

radiating medium

Suitable for low n materials (e.g. gas)

particle

Both the radius of the ring and the intensity are related to 6. and thus to S.




refractive strength

Examp|e- De|ph| RlCH RICH detector using two radiators of different
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Photon detector: TPC (with added photo-ionisation vapour, TMAE)
with quartz windows and MWPC readout.




Particle identification DELPHI particle ID

with the DELPHI
RICH
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Transition radiation:

A particle passing the boundary between two media with different dielectric constants,
will radiate photons. (predicted by Ginzburg & Frank 1946)

The energy radiated at one boundary: E = %a 14 ha)p (ha)p ~ 20eV for a plasticfoil)

E o y: potential for electron identification at high momenta! (for electrons: »> 1000)

The photon emission angle peaks at: @ oc }7// (very forward)

Typical photon energy: Ey ~ % y ha)p

I.e. several keV for electrons. (detectable in proportional chamber with high Z gas!)

Detection layers

Photon yield per boundary is low: <N7> x O R 13% N\
Many transitions needed! = 0o— 4 % %
A typical design: ' T ]\

Stacks of hydrocarbon foils
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ATLAS TRT: combined

tracking & transition radiation detector

Barrel SCT

Pixel Detectors

Wheels with 4 planés:
* radial straw tubes (I~50cm,d~4mm),

TRT barrel module filled with high Z gas
» stacks of polypropylene foils

Straw-tube detectors

Radiator: polyethylene
fibre mats




Electron identification with the ATLAS TRT
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