

Particle Detection Techniques in HEP

Lecture 5: Particle Identification

Post-graduate lecture series Joost Vossebeld

Lecture 5 "Particle identification techniques"

- Particle identification by global signatures
- Muon detection
- dE/dx
- Time-of-Flight detectors
- Cherenkov detectors
- Transition radiation detectors

Particle identification from global signatures (recap.)

Electrons & photons:

- track if electron
- shallow E.M.-shower

Charged/neutral hadrons:

- track if charged track
- deep hadronic shower

At low E similar to $e/\gamma!$

Muons:

- track in inner tracking detectors
- not stopped in calorimeter

(only energy deposition from ionisation)

• track in muon detectors

- Muon detection: example CMS μ -chambers:
- Sandwich of iron and detectors: drift-tubes / resistive parallel plate chambers / cathode strip chambers
- Iron cylinders (barrel) and disks (endcap) act as return yoke for the B-field. (Tracks are bent twice!)
- This helps the measurement of the momenta of muons.

Particle ID based on the detectors discussed so far:

<u>Global signatures</u>: electrons, photons, hadrons and muons (if *p* > few GeV/c!) Using <u>tracking</u> (and <u>calorimetry</u>) information:

- identify the charge of particles (from bending direction in the *B*-field)
- identify some unstable hadrons by:
 - <u>Mass reconstruction</u> from the decay products
 - e.g. $\pi^0 / \eta \to \gamma \gamma$, $K_s^0 \to \pi^+ \pi^-$,
 - observation of the <u>displaced decay vertex</u> (e.g. B-hadron decays)

What we would like to do in addition:

- Identify more charged hadron species (**p/pbar**, π^{\pm} , **K**^{\pm},..)
- Identify neutral hadron species (we can't)
- Distinguish electrons from hadrons at low energies
- Two basic approaches:
- 1. Measure the mass! (identification of charged hadrons species and electrons)
 - <u>Ionisation energy loss (dE/dx)</u>
 - Cherenkov radiation
 - <u>Time-of-flight measurements</u>
- 2. Exploit special energy loss properties of electrons
 - Improved <u>longitudinal segmentation of e.m.-calorimeter</u> (not discussed here)
 - <u>Transition radiation</u>

Example: dE/dx OPAL central drift-chamber.

Time-of-Flight (TOF) $v=\beta c$

$$t_{1}$$

$$t_{2} - t_{1} = \Delta t = \frac{L}{\beta c} = \frac{L}{c} \sqrt{1 + \frac{m^{2}c^{4}}{p^{2}c^{2}}}$$

• Only works in non-relativistic regime, $\beta < 1!$ (up to a few GeV/c)

For best mass determination we need:

- good time resolution (e.g. using scintillator detectors)
- long path length *L*
- t_1 : usually taken to be the collision time (from combined timing measurements)

 t_2 : detector typically installed after tracking detectors and before calorimeters. (longest possible L)

NA49 Time-of-flight detector

NA-49: fixed target experiment for heavy ion collisions

This allows for long path length:

*L≈*15m!

In addition big scintillator rods have excellent time resolution:

 $\sigma(\Delta t) \approx 60 \text{ ps!}$

1.08TOF chambers: layers of horizontal 10 ³ L = 15 m d D and vertical scintillator rods 1.06 $^{\prime}T_{\pi}$ 10 ² 1.04 K ||1.02 $T_{rel.}$ 10 1 0.98 L 14 2 6 8 10 12 momentum [GeV/c]

Cherenkov radiation:

Photo emission by a charged particle travelling in a dielectric medium with a velocity greater than the velocity of light in that medium:

ang in a n the $v_{\text{particle}} > \frac{c}{n} \left(\beta_{\text{thr}} = \frac{1}{n}\right)$ wavelets emitted all along the particles

Huygens wavelets emitted all along the particles trajectory form a single wave front under an angle θ_c w.r.t. the particle direction:

$$\cos\theta_c = \frac{(c/n)\Delta t}{\beta c\Delta t} = \frac{1}{\beta n}$$

Photon yield:

d^2N	-2π	70	1	\sin^2	A
$dxd\lambda$	-2π	ζ,α	λ^2	5111	O_c

$\propto \sin^2(\theta_c) = 1 \cdot (1/\beta n)^2$	\Rightarrow small when $n \approx 1!$
--	---

 $\propto 1/\lambda^2 \Rightarrow$ mostly blue light!

Medium	n-1	θ_{max}	$\pi_{thr}(p)\;GeV/c$	$N_{\gamma}\left(eV^{\text{-1}}cm^{\text{-1}}\right)$	$-\mathbf{D}_{\mathbf{a}}(\mathbf{b}, 0) = 1 \cdot 0 \cdot (\mathbf{a}_{\mathbf{a}} + \mathbf{b}_{\mathbf{a}}) + 1 \cdot 1 \cdot 1$
Air	1.000283	1.36°	5.9	0.21	- Both β_{thr} and θ_c (combined with
Isobutane	1.00217	3.77°	2.12	0.94	p) can be used for particle ID.
Aerogel	1.0065	6,51°	1.23	4.7	
Aerogel	1.055	18.6°	0.42	37.1	<i>n</i> values can be chosen to get
Water	1.33	41.2°	0.16	160.8	particle ID in a particular range of
Quartz	1.46	46.7°	0.13	196.4	momenta!

Ring Imaging Cherenkov Detectors (RICH)

 θ_c can be measured from Cherenkov rings. (two ways to produce rings)

Both the <u>radius of the ring</u> and the <u>intensity</u> are related to θ_c and thus to β .

RICH detector using two radiators of different refractive strength

Transition radiation:

A particle passing the boundary between two media with different dielectric constants, will radiate photons. (predicted by Ginzburg & Frank 1946)

The energy radiated at one boundary: $E = \frac{1}{3} \alpha \gamma \hbar \omega_p \ (\hbar \omega_p \approx 20 \text{ eV for a plastic foil})$

 $E \propto \gamma$: potential for electron identification at high momenta! (for electrons: $\gamma > 1000$)

The photon emission angle peaks at: $\theta \propto \frac{1}{\gamma}$ (very forward)

Typical photon energy: $E_{\gamma} \approx \frac{1}{4} \gamma \hbar \omega_p$

i.e. several keV for electrons. (detectable in proportional chamber with high Z gas!)

ATLAS TRT: Combined

tracking & transition radiation detector

TRT barrel module

Wheels with 4 planes:

- radial straw tubes (l≈50cm,d≈4mm), filled with high Z gas
- stacks of polypropylene foils

Straw-tube detectors

Radiator: polyethylene fibre mats

Electron identification with the ATLAS TRT

