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1 Lecture 2: Electrons in semiconductors I 

• Band structure in semiconductors: 

– Direct/indirect bandgaps 

– Density of states 

– Electrons and Holes 

• E-k relationships for: 

– Silicon 

– GaAs 

– Germanium 
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2 Reminder of Lecture 1 Concepts 

Semiconductor band 
diagram 

Density of states 
Density of allowed states  

per energy range 

Fermi distribution  
function 

Carrier concentration 
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3 Band structure of semiconductors 

• A solution of the Schrödinger equation provides an 
energy versus effective momentum E-k relationship. 
This is called the band structure of the semiconductor. 

• In semiconductor physics, we are interested in the 
properties of the E-k relation near the top of the valence 
band and the bottom of the conduction band. 
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4 Band structure of semiconductors 

• The top of the valence band occurs at k=0 in most 
semiconductors. 

• Notice the presence of two different E-k curves near the 
valence band edge, labelled the Heavy Hole and Light 
Hole bands. 

• The bottom of the conduction band in some 
semiconductors occurs at k=0. Such semiconductors are 
called direct bandgap semiconductors. Examples 
include, GaAs and InP 

• If the bottom of the conduction band does not occur at 
k=0, the semiconductor is termed indirect. Examples 
include Si and Ge. 

• The alignment of the valence and conduction bandedges 
has important consequences. Direct bandgap 
semiconductors have a strong interaction with light. 
This is a result of the law of momentum conservation. 
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5 Direct bandgap semiconductors 

• When the conduction bandedge is at k=0, the band 
structure can be represented by: 

 

 

• EC is the conduction bandedge, and the band structure 
is a simple parabola. 

• Notice that the E-k relation looks like that of an electron 
in free space except that the free electron mass m0 is 
replaced by the effective mass m*. 

• The electron responds to the outside world as if it had 
this mass, of course the real electron mass does not 
change. 

• The conduction band electron effective mass has a 
strong dependence on the bandgap, the smaller the 
bandgap the smaller the effective mass. 
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6 Indirect bandgap semiconductors 

• In silicon the bottom of the conduction band occurs at 
six equivalent minima along the x, y and z-axis. 

• The k values at the minima are: 

 

 

• And their inverses, where a (lattice constant) is 
0.543nm for Si. 

• For each of the six k points the conduction-band energy 
reaches a minimum value and as k moves away from 
these values the energy rises. These valleys in the 
conduction band have the energy momentum 
relationship: 

 

 

 

• For valleys along the x-axis and –x-axis.  

• m*l longitudinal effective mass 0.98m0. m*t transverse 
effective mass 0.19m0 
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7 Indirect bandgap semiconductors 

• The particle momentum for a free electron is zero when 
the kinetic energy is zero. 

• An electron at the conduction band minimum can have 
crystal momentum different from zero. 

• In silicon when an electron makes a transition from the 
valence band to the conduction band, it requires not 
only an energy change but also a change in crystal 
momentum. 

 

 What does this mean? 

 

• The fact that the minimum in 
the conduction band does not 
occur at k=0 illustrates the 
main difference between 
particle momentum and 
crystal momentum. 
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8 E-k relationships 

• The E-k relationships near the minimum of the 
conduction band or the maximum of the valence band 
are parabolic as indicated by: 

 

 

• With a well known E-k relationship, the effective mass 
can be obtained from the second derivative of E with 
respect to hk:  

 

 

• Therefore the narrower the parabola, the smaller the 
effective mass. GaAs has a very narrow conduction 
band parabola and the electron effective mass is 
0.07m0. For silicon it is 0.19m0 ([100]-direction). 
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9 Semiconductor DOS – Conduction Band 

• Using effective mass instead of electron mass we can 
obtain a value for the density of states. Assuming an E-
k relationship of the form: 

 

 

• The conduction band density of states becomes: 

 

 

• For indirect bandgap semiconductors, the conduction 
band density of states mass used in the above 
expression is: 

 

• For the valence band the density of states is: 
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10 Semiconductor DOS – Valence band 

• The energy-momentum relationship in the valence band 
is: 

 

 

 for the heavy hole and light hole bands respectively. 

• The valence band density of states is hence: 

 

 

 

 

 

• The density of states mass for the valence band is given 
by: 
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11 Example calculation: k-values 

• Calculate the k-value for an electron in the conduction 
band of GaAs with energy 0.1eV. Compare this to the 
case of an electron in free space. 

 

 

• For GaAs the appropriate mass in the conduction band 
is 0.067m0: 

 

 

 

 

• In free space the value is: 

• The two values are different since the k-value in the 
crystal represents the effective momentum. 
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12 Holes in semiconductors 

• At finite temperatures electrons are promoted from the 
valence band to the conduction band. The valence band 
is left with unoccupied states. 

• The concept of holes is introduced as a fictitious 
mathematic construction. 

• It carries a positive charge and moves under the 
influence of an applied electric field, in a direction 
opposite to that of an electron. 

• Mathematically, when all the valence band states are 
occupied, the sum over all wavevector states is zero: 

 

 

• This says there are as many positive k states occupied 
as negative. In a situation where the electron at 
wavevector ke is missing, the total wavevector is 
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13 Electron-hole pairs 

• As indicated previously. At finite temperatures 
electrons are promoted from the valence band to the 
conduction band.  

• The combination of the electron and hole is termed 
an electron-hole pair. It is roughly the solid-state 
analogue of the ion pair in gases. 

• The probability per unit time that an electron-hole 
pair is generated is given by: 

 

 

• T is the absolute temperature, Eg is the bandgap 
energy, kB is the Boltzmann constant and C is a 
proportionality constant characteristic of the 
material. 
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14 Electron-hole pairs 

• In the absence of an external electric field the created 
electron-hole pairs will recombine.  

• An equilibrium is established in which the concentration 
of electron-hole pairs observed at any time is 
proportional to the rate of formation. 

• This equilibrium concentration is a strong function of 
temperature and will decrease drastically if the material 
is cooled. 
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15 Band structure of Silicon 

• Relatively easy to fabricate 

• Excellent processing properties 

• High-quality native oxide 

• Bandgap is 1.1eV 

• Has poor optical properties 
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16 Band structure of GaAs 

• Superior electronic bandstucture to Si 

• Does not have an oxide 

• Difficult to process 

• Excellent optical properties 

• Bandgap is 1.43eV at 300K 

• Sharp bandedge 

• Room temperature semiconductor 
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17 Band structure of Ge 

• Germanium is an indirect semiconductor 

• Bottom of conduction band occurs at  

 8 points. 

• Hole properties of Ge are best of any 

 semiconductor (low hole masses). 

• Was the semiconductor of choice. 

• Processesing considerations. 

• Bandgap 0.9eV means that Ge must  

 be cooled. 

• Material of choice for gamma-ray  

 based radiation detectors. 
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18 Properties of semiconductors 

Property Si Ge GaAs

Electron ml*=0.98 m*=0.067

effective mass mt*=0.19

mdos*=1.08

Hole mhh*=0.49 mhh*=0.45

effective mass mlh*=0.16 mlh*=0.08

mdos*=0.55 mdos*=0.47

Bandgap (300K) 1.12eV 0.66eV 1.42eV

Bandgap (77K) 1.17eV 0.75eV

Energy e-h pair (300K) 3.62eV

Energy e-h pair (77K) 3.76eV 2.96eV

A selection of important semiconductor properties 
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19 Properties of semiconductors 

• At room temperature, the values of the bandgap are 
1.12eV for silicon and 1.42eV for gallium arsenide. 

• The bandgap approaches 1.17eV for Si and 1.52eV for 
GaAs at 0K. 

• The variation with  

 temperature can be  

 expressed for Si: 

 

  

• For GaAs 
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20 Example: Effective momentum 

• Calculate the effective momentum of an electron in the 
conduction band of GaAs when the electron energy 
measured from the bandedge is 0.5eV. 

• E-k relation is m*=0.067m0: 

 

 

• The effective momentum is hence: 
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21 Summary of Lecture 2 

• Bandstructure in semiconductors: 

– Direct/indirect bandgaps 

– Density of states 

– Electrons and Holes 

• E-k relationships for: 

– Silicon 

– GaAs 

– Germanium 

 


