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1 PHYS389: Semiconductor Applications 

Dr Gianluigi Casse:  

Room G25 OLL: gcasse@liv.ac.uk   

• Semiconductor Physics 

– Lattice structure 

– Electrons in semiconductors 

– Doping 

• Semiconductor Applications 

– P-N Junctions 

– Field Effect Transistors 

– Integrated circuits 

• Applications in Nuclear and Particle Physics 

– Accelerators and Nuclear Reactions 

– Nuclear radiation detection 

• Range of charged particles 

• Silicon and Germanium radiation detectors 

• Tracking  

 http://vital.liv.ac.uk 
 

mailto:ajboston@liv.ac.uk
http://vital.liv.ac.uk/
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2 Semiconductor Research at Liverpool 

• LHCb Silicon tracker 

• Germanium imaging 
detector 
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3 Lecture 1: What are Semiconductors? 

• History 

• Why all the fuss? 

• Crystal structure 

• Energy Bands 

• Density of states  

• Fermi Level 

• The Maxwell-Boltzmann approximation 
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4 Moore’s Law 

• “The number of transistors per integrated circuit will 
double every 18 months”, Gordon Moore, 1965. 
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5 What is a semiconductor? 

• When an allowed band is completely filled with 
electrons, the electrons in the band cannot conduct any 
current. 

• Metals have a high conductivity because of the large 
number of electrons that can participate in current 
transport 

• Semiconductors have zero conductivity at 0K. 



 

P
H

Y
S
3
8
9
 -

 S
e
m

ic
o
n
d
u
c
to

r 
A
p
p
li
c
a
ti
o
n
s
 L

1
 

6 Semiconductors: Classification 

Period Column II III IV V VI

2 B C N

Boron Carbon Nitrogen

3 Mg Al Si P S

Magnesium Aluminium Silicon Phosphorus Sulphur

4 Zn Ga Ge As Se

Zinc Gallium Germanium Arsenic Selenium

5 Cd In Sn Sb Te

Cadmium Indium Tin Antimony Tellurium

6 Hg Pb

Mercury Lead

Semiconductors composed of a single species of atoms, such as 
silicon and germanium are found in column IV of the periodic 
table. They are often termed elemental semiconductors. 

Compound semiconductors are composed of two or more 
elements. For example, GaAs, AlSb and InSb are all III-V 
semiconductors. CdS, CdTe and ZnTe are all II-VI. 
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7 Why all the fuss? 

• Semiconductors have special properties that allow you 
to alter their conductivities from very low to very high 
values. 

• Charge transport in semiconductors can occur by two 
different kinds of particles – electrons and holes. 

• Semiconductor devices can be designed that have 
input-output relations to produce rectifying properties; 
inverters and amplifiers. 

• Semiconductor devices can be combined with other 
elements (resistors, capacitors etc) to produce circuits 
on which modern information-processing chips are 
based. 
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8 The different states of matter 
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9 The crystal lattice 

• The periodic arrangement of atoms in a crystal is called 
a lattice. 

• The lattice by itself is a mathematical abstraction. 

• A building block of atoms called the basis is then 
attached to each lattice point, yielding a crystal 
structure. 

• For a given semiconductor there is a basis that is 
representative of the entire lattice.  

• In a crystal an atom never strays far from a single fixed 
position. 

• The thermal vibrations associated with the atom are 
centred about this position. 

Lattice + Basis = Crystal Structure 
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10 The crystal lattice 

• An important property of a lattice is the ability to define 
three vectors a1, a2 and a3 such that any lattice point 
R’ can be obtained from any other lattice point R by a 
translation: 

 

• m1, m2 and m3 are integers. Such a lattice is called a 
Bravais lattice. 

• a1, a2 and a3 are termed the primitive if the volume of 
the cell formed by them is the smallest possible. 

• Various kinds of lattice structures are possible in nature. 

• We will concentrate on the cubic lattice. 

332211 amamamR'R 
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11 The Cubic Lattice Structure 

Primitive  
vector 

Lattice  
constant 
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12 Face Centred Cubic lattice structure 

• The Face Centred Cubic (FCC) lattice is the most 
important for semiconductors. 

• A symmetric set of primitive vectors: 

)ŷx̂(
2

a
a  ),x̂ẑ(

2

a
a  ),ẑŷ(
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a
a 221 
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The Lattice 
Constant 
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13 Semiconductor lattices 

• Essentially all semiconductors of interest for electronics and 
opto-electronics have an underlying FCC lattice structure. 

• However, they have two atoms per basis: 

 

 

• This can be seen as two interpenetrating FCC sub-lattices with 
one sub-lattice displaced from the other by one quarter of the 
distance along a diagonal of the cube. 

• The separation between the atoms is 3a/4. 

• If the two atoms of the basis are the same, the structure is 
called diamond, semiconductors such as silicon and 
germanium fall into this category.  

• If the two atoms are different, the structure is called zinc 
blende, example III-V semiconductors include GaAs and AlAs.  
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14 Semiconductor example 

• At 300K the lattice constant for silicon is 0.543nm. 
Suppose we want to calculate the number of silicon 
atoms per cubic centimetre. 

 

 

322

383si atoms/cm 105
)1043.5(

8

a

8
N 






•  There are 8 atoms per unit cell, therefore: 
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15 Semiconductor lattice properties 

• We need a convenient method of defining the various 
planes – Miller Indices. 

– Define the x, y, z axes. 

– Take intercepts of the plane along the axes in units 
of lattice constants 

– Take the reciprocal of the intercepts and reduce 
them to the smallest integers h, k and l. 

• (hkl) denotes a family of parallel planes. 

• {hkl} denotes a family of equivalent planes. For 
example {100}, {010} and {001} are all equivalent 
in the cubic structure. 

• [hkl] denotes a crystal direction e.g. [100] x-axis 

• <hkl> denotes a full set of equivalent directions. 
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16 Miller Indices 

The crystal properties along different planes are different 
– there are differences in the atomic spacings. 

 

This means electrical and other device properties are 
dependent on the crystal orientation. 

 

So what does this mean? 
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17 Electrons in free space 

• Electrons inside semiconductors can be regarded as 
“free” under proper conditions – allowing rules for free 
electrons to be easily adapted for semiconductors. 

• Solving Schrödinger equation: 

 

 

• The energy of the electron is obtained as: 

 

 

• And the momentum is obtained as: 

• Equation of motion: 

 

• Where k is the wavevector:  

 

• The energy-momentum (E-k) relation for free electrons 
now be obtained. 
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18 Electrons in free space E-k relation 

• The energy-momentum relationship: 

 

 

 

 

 

 

 

 

 

 

 

 

• The allowed energies form a continuous band. 
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19 The density of states 

• The density of states is the number of available 
electronic states per unit volume per unit energy around 
an energy E. 

• Is a very important, and important physical phenomena 
such as optical absorption and transport are intimately 
dependent on this concept. 

• The density of states  

 N(E) can be written as: 

32
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20 Density of states: Example 

• The density of states of electrons moving in zero 
potential at an energy of 0.1eV: 

 

 

 

 

 

 

 

• Expressed in the more commonly used units of eV-1cm-3 
gives, 
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21 Electrons in crystalline solids 

• When the electron wavefunction is confined to ~10nm 
around the nucleus, only discrete or bound state 
energies are allowed. 

• When the atomic spacing becomes 10-20nm, electrons 
will sense the neighbouring nuclei, and will be 
influenced by them. 

• The result of these interactions is: 

– Lower-energy core levels remain relatively unaffected 

– Electronic levels with higher energies and whose 
wavefunctions are not confined to the nucleus, broaden 
into bands of allowed energies. 

– These allowed bands are separated by bandgaps. 

• Within each band the electron is described by a k-vector 
(as before), only the relation is more complicated. 

• The electron behaves as if it were in free space, except 
it responds as if it had a different or effective mass. 
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22 Filling of electronic states 

• How do the electrons distribute themselves among the 
various allowed electronic states? 

• The distribution function f(E) tells us the probability that 
an allowed level at energy E is occupied. 

• Is the Maxwell-Boltzmann distribution function : 

 

 

 

 

• EF is the Fermi level 

 representing the energy 

 where F(EF) =1/2. 
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23 The Fermi level in semiconductors 

• If the electron density is small, so that F(E) is always 
small. The Fermi function can be presented by the 
Boltzmann function. 

• The electron density can now be analytically evaluated 
as: 

 

 

 

 

• Where Nc is called the effective density of states and is 
defined as: 
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24 Fermi level: Example calculation 

• Calculate the Fermi level at 77K for a case where the 
electron density is 1019cm-3. Assume the energy band 
starts at E=0. 

• In the Boltzmann approximation, the Fermi level is: 
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25 Summary of Lecture 1 

Semiconductor band 
diagram 

Density of states 

Fermi distribution  
function 

Carrier concentration 
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