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OUTLINE:

» Oxygenation technique of silicon wafers by High Temperature
Diffusion froma SO, layer

» Results of Ngt (Vep) Vs fluence for control and oxygenated
diodes.

» Resultsin term of CCE for control and oxygenated diodes.

» Results of oxygenated and control diodes from Micron
Semiconductor.

» Feasibility of large area microstrip detectors with HTD oxygen
enriched silicon: ATLAS SCT detectors made by Micron.

» Results after irradiation in term of |-V, C-V and interstrip
capacitance: large area and miniature detectors.

» Resultsin term of CCE, from light spot (1064 nm laser) and fast

electrons (**

Ru source).
» Comparison of CCE between oxygenated, control and thin
Hamamatsu irradiated detectors. Normalisation to the

preirradiation value.




Oxygenation technique of silicon wafers by High
Temperature Diffusion from a SiO, surface layer.

The isotropic diffusion process is described in term of diffusion coefficient
D, as defined by the first Fick’slaw: j =-DON
where N is the impurity concentration. The silicon devices are plane and

parallel structures, therefore the analysis can be limited to the ssimple one
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dimensiona case. ﬁ - a2

Solution in the case of diffusion from a surface layer of Oxygen acting as an

infin NG = e e XD
infinite source: ’ 2 q \/ﬁ ﬁ )

where h isthe depth of the initial impurity distribution.

\ Silicon wafer (300 micron thick)

Si0, coating (3000 A thick)

Diffusion atmosphere: N, or O, (no advantages using O,)




Calculated oxygen diffusion profile @ 1150 °C using
the diffusion coefficient: 2.2510'°cm? s™* (obtained
from fit on SIM S profile, Ref. G. Casse, 1998).
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CARBON diffusion

Carbon is in competition with oxygen in term of
beneficial effects on radiation hardness of silicon
detectors.

The diffusion of carbon is~ 10 times sower than oxygen
(carbon diffusion coefficient is 3.3810™ cm? s* (from
Properties of slicon, INSPEC, The Institution of
electrical Engineers, London and New York, 1998. The
same source compiles oxygen diffuson coefficients
ranging from 1.60 [10'° to 5.60 (10" cm® s™)

3.5E+17

Temperature of diffusion = 1200 °C
3.0E+17 A
2.5E+17 \
0 days diffusion

\ X\/ 5 days diffusion

1.5E+17

e\ N
\>(1 day diffusion

5.0E+16 \ \

1.0E+13 ‘ N :

0 50 100 150 200 250 300 350
depth [pm]

C concentrations [cm 3]




L eakage current versus fluence for oxygenated and un-

oxygenated silicon diodes.

The increase of the leakage current is a linear function of the
fluence. The current is proportional to the concentration of
radiation induced defects. The reverse volume current is
measured using irradiated diodes biased above full depletion.
Silicon materials with different (deliberately introduced)
impurity concentrations do not show differencesin the slope of
the volume current with fluence. In the LHC experiments,
these high currentswill be reduced by cooling the detectors.

Normalised to 20 °C
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The introduction of high oxygen concentrationsin the
silicon bulk does not affect the increase of the leakage
current with fluence




The effective doping concentration (Ng¢) ver sus fluence
for oxygenated and un-oxygenated silicon diodes.

p-in-n detectors must be operated above full depletion to allow good signal/noise
ratio. The full depletion voltage of silicon detectors is proportional to the effective
doping concentration, which becomes more p-type as a consequence of the hadron
irradiation. After heavy doses, N is dominated by the concentration of the
radiation induced p-type defects.

A high oxygen concentration (>10* cm™®) in the silicon bulk reduces the effective
introduction rate of acceptor-like defects and therefore the required detector bias
after high doses.

In all the following figures the diodes have been annealed at
80 °C for 4 minutesto just complete the beneficial annealing
phase.
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At high doses, Ng; is similar for un-oxygenated p-type or n-type starting materials, being dominated by the radiation
induced defects. The oxygenated n-type silicon diodes show a substantially lower N after high doses.
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Diodes produced with silicon wafers submitted to high temperature oxygen
diffusion for different times show very ssmilar behaviours. They are here
compared with diodes made from an un-oxygenated silicon wafer from the

same ingot.
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BNL diodes. CCE normalised to the value @ 250 V.

CCE (from 1060 nm laser) after 1.7 10" 24 Gevic protons cm’?
standard and oxygenated silicon detectors
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BNL diodes. CCE normalised to the value @ 250 V.


CCE (arb. unit)

ITME diodes. CCE normalised to the value @ 500V.

CCE (from 1060 nm laser) after 4.0 10" 24 Gevic protons cm’?
standard and oxygenated silicon detectors
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Gianluigi Casse
ITME diodes. CCE normalised to the value @ 500V.


CCE (arb. unit)

BNL diodes. CCE normalised to the value @ 600 V
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Full depletion voltage (V)

Full depletion voltage vs fluence for oxygenated
and non—oxygenated silicon detectors manufactured
from 6 inches (100) crystal oriented silicon wafers
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Reverse Current (LA)
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[-V of standard and oxygenated Micron wedge detectors

Measured at room temperature
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[-V of Micron miniature detectors
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Capacitance (pF)
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Interstrip capacitance (pF)

Interstrip capacitance (1¥ and 2" neighbours

each side) non irradiated detectors, 4 inch. (111) wafers

Non oxygenated detectors
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Interstrip capacitance (pF)

Interstrip capacitance (1¥ and 2" neighbours

each side) non irradiated detectors, 4 inch. (111) wafers

Oxygenated detectors: 110 hours at 1100 °C
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Interstrip capacitance (pF)
o N

Interstrip capaC|ta2nce (1% and 2" neighbours
each side) after 3 10" p cm“, oxy. detectors, 4 inch. (111) wafers

Oxygenated detectors: 110 hours at 1100 °C
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Non-oxygenated
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Oxygenated
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-V of Micron Oxygenated barrel detectors after 3x10™ p. e’

Measured at -18 + 2 °C

® \Measured after 10 minutes settling time at 500 V
B Measured after 12 hours settling time at 500 V
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-V of Micron standard barrel detectors after 3x10™ p. cnt’

Measured at -18 + 2 °C

® Measured after 10 minutes settling time at 500 V
B Measured after 12 hours settling time at 500 V
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Reverse Current (LA)
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-V of Micron miniature detectors after 4x10™ P e’
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Backplane C—V of oxygenated and un—oxygenated
Micron detectors after 3x10™ p. cm”
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Capacitance (pF)
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Capacitance (pF)

250

200

50

Backplane C-V of oxygenated and un-oxygenated
Micron miniature detectors after 3x10™ p cm?

Shuttleirradiation

O

Control detector 1821 -06

Oxygenated detector 1881-20

50

100

150

200

250

500

550 400

Bias (volts)



Capacitance (pF)

Backplane C-V of oxygenated and un-oxygenated
Micron miniature detectors after 4x10™ p. cm?
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CCE (arbitrary units)
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CCE (arbitrary units)
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CCE (arbitrary units)
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CONCLUSIONS

= Oxygenated (with high temperature diffusion technique)
silicon substrates are suitable for production of
segmented detector (good results from oxygenated large
area and miniature detectors). No evidence of oxygen
induced relevant deterioration of the electrical properties
of the detectors in term of reverse current, capacitance
and noise measurements.

= Silicon detectors made from oxygenated substrates show
better radiation hardness properties (when irradiated with
high energy charged hadrons) than “standard” substrates.
In term of CCE of microstrip detectors, the benefit is
lower than expected (form CV measurements of silicon
pad diodes).

» The use of oxygenated substrate is suitable in high
charged particle radiation environment and still slightly
beneficial (and not harmful) in lower radiation
environment. Future investigation of this substrate are
planned in Liverpool, especialy for the applications in
the LHCb experiment tracker environment. Use of
oxygenated substrate for standard p-in-n, but also n-in-n
and n-in-p diode geometry will be investigated.
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