
mu3eTrirec and mu3eEfficiency

Charlie Kinsman

February 1, 2023

1 Overview

The purpose of mu3eTrirec is to reconstruct the tracks of the particles using the output file from
mu3eSort. There are output trees, segs and frames. The segs tree contains information on individual
segments or tracks, so one entry corresponds to one segment. The frames tree contains vectors of
segments and effectively categorises these segements. It should be remembered that when in cartesian,
the z direction is centered around the stopping target where the positive direction is parallel to the
beam direction. The positive y axis is pointing upwards, in reference to the detector. The x axis is right
handed. Some of the products listed in the root files are carried through from mu3eSim and mu3eSort.
Mu3eEfficiency is part of the dev branch rather than the main branch. It calculates efficiencies of track
reconstruction when certain factors are changed, such as the hit efficiency of a layer being reduced or
a hit in a track being removed entirely. The dev branch as well as having it’s own executable with
it’s own outputs, also has additions to the Trirec branch to allow for some changes to be made before
efficiencies are calculated.

2 mu3eTrirec - Main Branch

2.1 Overview

The main branch of the simulation does not contain efficiency calculations, it does however contain
truth information and has the groundwork for Trirec that the dev branch is built on.

2.2 To Add

hid: Hit ID. sid: silicon hit id. x0, y0, z0...:. n shared hits and n shared segs:. tan01, lam01:.nsg, nhg,
ns:. s3n, s6n 0:.mc vpca:. prop z:.

Util:units.hpp

Figure 1: Table of fb values to add into the document.

1

2.3 Segs Tree

2.3.1 runId

The run ID refers to the seed used in the simulation, and therefore gives a repeatability aspect. As
this is all in the same branch, technically it refers to the run of the simulation that this particular
track/entry belongs to.

2.3.2 eventId

The event ID refers to the frame from which the track was reconstructed. Like the run ID, it is labeled
by each event, so each event will have it’s own particular ID depending on the frame from which it
was reconstructed.

Figure 2: Histogram of n. In this instance n refers
to the number of triplets used to reconstruct a
track. This is different to the n used in the frames
tree

Figure 3: Histogram of nhit. nhit refers to the num-
ber of hits used to reconstruct a track. This differs
from n because n refers to the number of triplets
used to reconstruct a track

2.3.3 n

n refers to the number of triplets found and used to reconstruct each track. An example histogram of
this distribution is shown by figure 2.

2.3.4 ndf

ndf refers to the number of degrees of freedom that are associated with each track. This is proportional
to the number of triplets (ndf = 2 · (n− 1)).

2.3.5 nhit

nhit refers to the number of hits used to reconstruct a track. An example histogram of nhit is given
by figure 3.

2.3.6 r

r is the three dimensional radius or curvature of the helix of the fitted track/segment. An example
histogram of r is given by figure 4.

2.3.7 rerr2

rerr2 refers to the square of the error of the radius of the helix for the given track. An example
histogram of rerr2 is given by figure 5.

2.3.8 p

p refers to the momentum of the fitted track.

2

Figure 4: Histogram of r. In this instance r refers to
the radius of the fitted/reconstructed tracks. The
main distinct feature of this bimodal distribution is
the second distribution being much more populated
then the first. This is down to the charge of the
particles, there is twice as many positive particles
than negative particles.

Figure 5: Histogram of the squared error of the
radius of the fitted tracks. These can be related
to the r histogram when computing efficiencies and
resolutions etc.

2.3.9 perr2

Like rerr2, this is the square of the error of the momentum.

Figure 6: Histogram of momentum of the fitted
tracks.

Figure 7: Histogram of the chi squared distribution
of the fits. The significance of the distribution of
fits can be shown in table 7

2.3.10 chi2

This is the χ2 values of the fits. These are individual χ2 values that have been placed in the histogram
shown in figure 7.

2.4 Segs MC Tree

2.4.1 Overview

The MC tree refers to the monte carlo aspect of the simulation. This effectively gives us the truth
information of the tracks.

2.4.2 mc

mc refers to if the hits on the in a given track are from the same track or different and if they are in the
correct sequence. This value is 1 for a given track if this condition is true. This therefore somewhat
implies if the track is true or not.

3

2.4.3 mc prime

mc prime is 1 if mc is 1 and the first segment of the track is correct for a given particle. As the first
segment is the most important, if this is not correct for a particle then the rest of the track is not
going to be correct either.

2.4.4 mc type

mc type refers to the origin of the particle in question. As this is all truth information (mc), the
correct particle and from which decay it originated can be identified. 5.1 shows the table of digits that
this refers to.

2.4.5 mc pid

mc pid refers to the particle ID. Again using the same numbering system as before. The output of
this is different, such that the entries which are not from the relevant decays are removed and placed
in the negative section. The relevant decays and particles are therefore in the positive section.

2.4.6 mc tid

mc tid is the track ID of the particle. This is the truth information, therefore this can relate certain
tracks to other tracks or to the mother particle.

2.4.7 mc mid

mc mid is the same as mc tid but is the ID of the mother particle. This can therefore be used by the
vertex analysis to produce the truth information of the decay vertices.

2.4.8 mc p

mc p refers to the momentum of the particle after decay. This momentum combined with the transverse
momentum can be used to calculate the longitudinal momentum. An example of distribution can be
seen in figure 8.

Figure 8: Histogram of the particle momentum.
This can be used to calculate the helix parameters
and the decay products. This distribution falls to 0
at 53MeV because that is the muon mass and the
muons have been stopped.

Figure 9: Histogram of the transverse momentum.
This can be used to calculate the helix parameters
and also the decay products. This distribution also
falls to 0 at 53MeV because that is the muon mass.

2.4.9 mc pt

mc pt refers to the transerse momentum of the particle. This can be used to calculate the radius of
the helix of the particles. An example of distribution can be seen in figure 9.

4

Figure 10: This shows the truth information for the
phi positions of the vertices.

Figure 11: This is the truth information for the
theta positions of the vertices.

2.4.10 mc phi

mc phi is one of the parameters of the helix of the particles. This can be used with the other parameters
to reconstruct the tracks of the particles. This particular parameter is a transverse parameter as it
refers to the angle completely in the x− y plane. It’s zero point shouldn’t matter, if studying the total
distribution, as any distribution that is produced should be uniform. This is the phi distribution of
the vertices. An example of distribution can be seen in figure 10.

2.4.11 mc lam

Like mc phi, mc lam is another of the parameters of the helix tracks of the particles. Unlike mc phi
however, mc lam is a longitudinal parameter. This is the angle between the z axis and the x−y plane.
Where λ = 0 is pointing in the positive z direction. Also λ = π

2 − θ. This is the lambda distribution
of the vertices.

2.4.12 mc theta

Like mc lam, mc theta is another longitudinal parameter of the helix track of the particle. This
parameter is the opposite of mc lam in the sense that θ = 0 is pointing in the negative z axis. Again
θ = π

2 − λ. This is the theta distribution of the vertices. An example of distribution can be seen in
figure 11.

2.4.13 mc vx

mc vx refers to the origin vertex position in the x direction. This is not the x component of the
velocity. An example of the distribution is shown in figure 12. As seen, the distribution peaks around
0mm and quickly drops off. As can be seen the distribution is approximately even which is to be
expected as the stopping target is itself symmetrical around the 0 position.

2.4.14 mc vy

mc vy refers to the origin vertex position in the y direction.

2.4.15 mc vz

mc vz refers to the origin vertex position in the z direction. An example of a z distribution is given
by figure 13. As can be seen, if a cut of the histogram is taken between −100mm and 100mm, the
distribution is fairly even as is the stopping target. It also starts to pick up at −50mm and 50mm
which is the dimensions of the stopping target in the z direction. It also slightly picks up on the
downstream side of the stopping target which makes sense as it becomes increasingly unlikely that a
muon is stopped on the tip of the upstream side of the target. There is also a small peak before the
stopping target around −150mm, this represents muons that either decay before hitting the stopping
target or decay vertices that originate from particles that have previously decayed on the stopping

5

Figure 12: This shows the truth information of
where the vertices of the decays are. In this in-
stance, this is the x position of the vertex.

Figure 13: Again this is the truth information of
the vertices of the decay. This histogram is the z
position.

Figure 14: This is the truth information of the ra-
dial component.

Figure 15: This is the truth information of the time
of the decay at the vertex.

target. Another distribution of muons stopped in the z direction is given in the technical design of the
stopping target, which shows the bimodal distribution of muons stopped in the z direction.

2.4.16 mc vr

mc vr refers to the origin vertex position in the radial axis. An example of this distribution is shown
in figure 14. This does not peak around the 0mm mark which given the 0 mark refers to either the two
tips of the stopping target and therefore refers to less surface area in comparison to 10mm for instance,
this result makes sense. The first distribution drops off at approximately 20mm which corresponds to
the radius of the stopping target, so again, this result makes sense as the vertices in this section of the
distribution generally refer to the decay products of surface muons. The second peak refers to vertices
of the decay products of the surface muons. It should also peak approximately where it is because in
this simulation, the width and length of the beam are 7.8mm and 9.1mm respectively, therefore there
is a lower chance of muons being stopped outside of this range.

2.4.17 mc vt

mc vt refers to the time of the origin vertex.

2.5 Frames Tree

2.5.1 Overview

Each entry contains vectors of segments/tracks with a given event ID. This effectively categorises the
segments rather than describes physical qualities as happened in the segs tree. More simply, this will
collect the segments into frames as opposed to just listing all the events.

6

2.5.2 runId

This again refers to the random seed used for the run of the simulation.

2.5.3 eventId

This again refers to the frame of the simulation, not the track specifically.

2.5.4 weight

This is the weight associated with the event, generally this is preset by the generator. This is probably
adapted by mu3eSim as opposed to mu3eTrirec, but that is worth checking if it becomes relevant.

2.5.5 n

As opposed to the segs tree wherein n referred to the number of triplets used to reconstruct the track,
this time n refers to the number of segments found in each event/frame. This is then further broken
down into the number of 3, 4, 6 and 8 hit segments found in a frame. In the n histogram (shown by
figure 16), this details the number of segments found in each frame and groups the frames where the
same number of segments found together. So the number of frames where 2 segments are found are
listed and so on for instance.

Figure 16: Histogram of n. This shows the number
of frames with n referring to the number of seg-
ments found in them, irrespective of length.

Figure 17: Histogram of n3. This shows the number
of frames where a 3 hit segment was found. Exclud-
ing empty frames, this can only be a single entry
into the histogram because all segments are made
up of triplets and therefore every frame is going to
contain a 3 hit segment.

2.5.6 n3

n3 refers to the number of segments that were reconstructed with three hits or rather one triplet.
Physically, this will most likely be a particle exiting the central station. An example of this is shown
in figure 17.

2.5.7 n4

n4 again refers to the number of segments that were reconstructed with four hits or rather two triplets.
Again this represents just a particle exiting the central station. As described in the example figures,
the numbered histograms show the number of frames where a number of 4 hit segments were found.

2.5.8 n6

The number of hits is now self-explanatory and the number of triplets is three. This refers to a particle
exiting the central station and entering one of the recurl stations.

7

Figure 18: This shows the frames in which an 8
hit segment was found, where the number refers to
the number of segments that were found in a frame.
So the histogram entry corresponding to 3 refers to
the number of frames where 3, 8 hit segments were
found.

Figure 19: This is the truth information for the n8
histogram.

2.5.9 n8

This represents a particle exiting and entering the central station.

3 mu3eTrirec - Efficiency Branch

3.1 Overview

3.2 To Add

ein eout etc

Figure 20: S5 code to go add into the document.

Figure 21: Efficiency code to go add into the document.

8

3.3 Segs Tree

3.3.1

4 mu3eEfficiency

4.1 Overview

5 Tables

5.1 Numbering

Table 5.1 shows the digits used to reference particles and their origins in the software.

First Digit Particle Origin Second Digit Particle

0 Primary Particle (From particle gun/generator) 0 Photon
1 Michel Decay 1 Positron
2 Radiative Muon Decay 2 Electron
3 Internal Conversion Decay 3 Mu-
4 Photon Conversion 4 Mu+
5 Bhabha Scattering 5 Pi+
6 Bremsstrahlung 6 Pi-
7 Positron Annihilation 7 Neutrino
8 Compton Scattering/Photoelectric Effect 8 Geantino
9 Mu−→3e 9 Reserved
10 Mu−→eX Note: Negative sign refers to

unidentified/invalid/combinatorial etc

5.2 Helix Parameters

Table 5.2 shows the parameters that are used when describing the helix.

Name Parameter Function

kappa κ Describes the curvature of the helix.
tan tan(λ) Describes the distance between turns of the helix.
phi ϕ Transverse angle of the helix, in the x− y plane.
dca dca Offset of the centre of the helix from the z axis.
z0 z0 Origin of the helix in the z axis.

5.3 Chi Squared versus p-value

Figure 22: Table of χ2 values as a function of degrees of freedom and p-value or rather significance.

9

5.4 Conversion Equations

Table 5.4 shows the conversion between Cartesian coordinates and the coordinate system that best
helps describe a helix.

Parameter Conversion Comments

rt rt =
√
x2 + y2 The distance to the point from the z-axis or rather in the x− y plane.

r r =
√

x2 + y2 + z2 The 3D radius, that being the distance to a point from the origin.
phi ϕ = arctan(yx) Angle between the vector in the x− y plane.
lam λ = arctan(z

rt) Offset of the centre of the helix from the z axis.

6 Code

6.1 Write about

Segment.h Segment.cpp efficiency.cpp Frame.cpp (Both versions) Frame.h (Both versions) Root.cpp
trirec.cpp (Not too important for now) HelixBase.h TripletBase.h

6.2 float.hpp/double.hpp

6.2.1 Overview

These pieces of code focus on the building blocks of the vectors involved. They initially define the
vectors that are to be used, either defining a 2 or 3 dimensional vector. Both are used to define what
to do with a vector if it is in a double or float data type. The float.hpp file has the most information
about what to do. There are initial definitions of what the vectors are, i.e. a function to collect the
three coordinates, these are completed in the make float functions. There are then functions to convert
the coordinates into a more useful coordinate system for the helix. These are completed in the float2
or float3 functions (there are also 4-vectors). Finally operators are defined, such that when two vectors
are added or subtracted etc, this can be done.

6.2.2 Conversions

The initial Cartesian inputs are taken with the make float function. Then using float2 or float3
(depending if it is a 2D or 3D vector), a series of conversions is completed in order to put them into a
form more useful for the geometry of the helix trajectories of the particles. The equations that relate
these conversions can be found in table 5.4.

6.2.3 Vector Operations

The code also defines operators that can be used on these defined vectors. These operators are written
the same as could be used on regular variables, but are redefined for the sake of vector operations. For
instance + and += have the same function, but are used for vector operations. Multiplication and
division are slightly different, they multiply a vector with a scalar, not another vector. Finally, the
dot and cross products of two vectors are defined.

6.3 HelixBase.h

6.3.1 Overview

The purpose of this code is to generate helices from the hits that are detected. This piece of code
provides the mathematical foundation for the helices in the form of functions. Initially the code
generates helices from two connected hits in two separate layers. It does this by selecting the two hits,
then using known parameters, generates a helix that would incorporate these two hits. A description of
these processes is provided in detail later. The next thing it does is start to relate two helices together
to generate a triplet. It should be noted that this code is not used for the selection of related hits, but
simply accepts two hits that the selection process has related and generates helices and then triplets.

10

6.3.2 Helix Generation

The generation of the helices is done by taking two consecutive hits in the layers and uses known
parameters to gauge an estimation of the helix that could be generated by a particle that caused these
hits. Initially the code takes in two float3 variables (as found in the float.hpp code 6.2.1). These float3
variables correspond to 2 hits that are found in successive layers.

Distance and angle between hits - This part of the code takes the two hits, specifically their x
and y components and takes the difference and the angle between the two. The difference is done with
the operators that are mentioned in the float.hpp section 6.2.1. The angle that is taken is the ϕ angle
between the hits, which is the angle in the x−y plane. It is taken with the condition that the distance
found is greater than the value FLT EPSILON. If the value is less than this value, then the angle is
found to be 0. Anything else is found using the function std::copysign. This takes the magnitude of
the first value and applies the sign of the second value. In this instance the first value is the angle and
the second value is the y-component, y01.

• x01 - Difference between x-coordinate in hit 0 and 1 −→ x01 = h1.x− h0.x

• y01 - Difference between y-coordinate in hit 0 and 1 −→ y01 = h1.y − h0.y

• d01 - Distance between hits 0 and 1 in x − y plane, effectively the transverse radius −→ d01 =√
x012 + y012

• d01 2 - Half distance between hits 0 and 1 in x− y plane −→ d01 2 = d01
2

• FLT EPSILON - Not a piece of code that was written for this purpose but is worth mentioning.
This is the difference between 1 and the smallest floating point number of type float that is greater
than 1. Effectively, a very small number.

• phi01x - The angle between the x01 direction and the d01 direction. The sign of this angle is
positive if the angle is in the positive y-direction and negative in the opposite case −→ phi01x =
arccos x01

d01

Fitting triplets - Just listing various angle definitions to clarify knowledge. These definitions are
focused on relating the two hit pairs.

• x02 - The x-component of the difference between the the first and third hit of the triplet −→
x02 = h2.x− h0.x

• y02 - The y-component of the difference between the the first and third hit of the triplet −→
y02 = h2.y − h0.y

• d02 - The distance between the first and third hit of the triplet in the x − y plane −→ d02 =√
x022 + y022

• rt - This is the centre of the circle that is in the x−y plane, or rather the radius of the tangential
component −→ rt = d01·d12·d02

0.5((x01·y12)−(x12·y01))

• dphi - This is the difference in the angle ϕ between the two helices (h01 and h12) given
by the pair of hits, i.e. the h01.phi01x value. This uses a function that is defined in the
utilities/math.hpp file, but this function is there to generate an error message if an angle
greater than π is calculated, other than that the equation is exactly what would be expected −→
dphi = h01.phi01x− h12.phi01x

• kt - This is the curvature of the triplet in the x−y plane, formed by the two helices (h01 and h12).
Whereby kt = 1

rt . This is calculated using the cross product function written in the float.hpp

piece (6.2.1). The equation used is as follows −→ kt = ((h01.h1−h01.h0)×(h12.h1−h12.h0)).z
4∗h01.d012∗h12.d012∗d022 . This

equation takes the z component of the cross product of the vectors that define the pairs of hits in
each helix. It then divides by the magnitude of these vectors in order to just get the curvature.
The alternative version of writing this equation shows an equation more closely related to the
general formula for the cross product of two vectors −→ kt = sin dphi

d022
. As seen here, this is much

closer to the standard equation for the cross product of the vectors

11

• phi01c 2 - This represents the angle ϕ at the centre in between the two hits in the helix. This
is the local angle ϕ though, not the angle relative to the origin of the coordinate system (the
stopping target), but the angle relative to the two hits in the pair. It should be noted that these
values can be referred to the value dphi −→ dphi = phi01c 2 + phi12c 2 = phi01c+phi12c

2 . The
angle is calculated with the following equation −→ h01.phi01c 2 = arcsin(h01.d01 2 · kt). The
other angle can be calculated with the equation −→ h12.phi01c 2 = dphi− h01.phi01c 2

• z01 2 - The halfway point between the two z coordinates of the hits in a pair. The equation is
given by −→ z01 2 = h1.z−h0.z

2

• tanlam01c - This represents the angle pointing in the direction of the z-axis from the x−y plane.
It should be remembered that kt = 1

rt .The equation is given by −→ tan(lam01c) = z012·kt01
phi01c2

• cos2lam01c - Cos2 is cos2. It should be repeated that these angles are referring to a pair of
hits (not a triplet), hence the ’01’ suffix. It also the angle that is found centred between the
hits, hence the suffix ’c’. The derivation for this equation is found with simple trig identities of
tanx = sin x

cos x . The equation used in the code is given by −→ cos2lam01c = 1
1+tanlam01c2

• delta01 - This is ultimately going to be used as part of the correction factor that turns the local
angles of the helix into global angles (as in relative to the origin, not the helix). This particular
calculation uses the xtanx function defined in the math.hpp file if the value of phi01c 2 is less
than 1. The equation for delta01 is given by −→ delta01 = 1−phi01c 2

tan(phi01c 2) . This is then multiplied

with the cos2lam01c value.

• k01c - This is the 3D curvature, not just the transverse curvature. This is centered in between
the two hits. Whilst the transverse curvature is constant, the k01c value is dependant on the
angle from which it is measured. The equation is given by −→ k01c = cos(lam01c) · kt01

• alpha01/alpha01 2 - This is the correction factor that is going to convert local ϕ values to
global ones. The equation for both alpha01 and alpha01 2 is given by the rate of change of ϕ
with respect to k (the general curvature of the helix, not just the transverse curvature). The
equations are given by −→ alpha01 = 1

1−delta01 and alpha01 2 = alpha01 · phi01c 2
k01c

• beta01 - Like alpha01, this is a correction factor that converts from local angles to global ones.
In this instance, β changes the λ angle. This is found with the rate of change of λ with respect
to the radius of the helix. The equation is given by −→ beta01 = delta01

1−delta01 · tanlam01c
−k01c

• phi01 2 - FINALLY, we can find the global angles relevant to the helix. This means we can
now describe the helix relative to the origin of the coordinate system. For ϕ, we find that the
conversion is given by −→ phi01 2 = phi01c 2 + ((k − k01c) · alpha01 2)

• lam01 - We can do the same for the λ angle with the following equation −→ lam01 = lam01c+
((k − k01c) · beta01)

• tan0 - The tangent to the circle in the x − y plane at hit 0. This is given by −→ lam0 =
phi01x− phi01 2

• tan1 - The tangent to the circle in the x − y plane at hit 1. This is given by −→ lam1 =
phi01x+ phi01 2

Everything else in the code that isn’t listed, is relatively self-explanatory and can be easily derived
from the items described above. The only other function that should be mentioned is pca. This refers
to the point of closest approach, and puts the helix parameters relative to a point v. This will therefore
be used to assess helices that originate at a decay vertex not centered at the origin of the coordinates.

6.4 TripletBase.h

6.4.1 Overview

The aim is to build up a triplet based on the hit pairs. Part of this fitting process is done in the
HelixBase.h file. In that file, code is written such that two hit pairs, with associated helix parameters

12

are collected constructed into a triplet and an initial fit is checked (Whereby an error is thrown if
d01 or d12 or d02 is less than 1mm or dphi is less than 1mrad). It also builds a 3D curvature which
minimises the χ2 of the triplet. The result of this fit is such that a triplet is generated and has a series
of parameters associated with it like a curvature and error. It also includes all the parameters that
were contained in the hit pairs.

6.5 SegmentBase.h

6.5.1 Overview

This code does an initial fit on a segment. It constructs segments and at each step uses the fit triplet
from the HelixBase.h file in order to check that it falls within the requirements of a triplet and assigns
new parameters as a segments such as weights and a χ2 value. Importantly, this doesn’t take into
account any physical variables such as energy loss, pixel positions or any material knowledge.

6.6 segment.h/.cpp

6.6.1 Overview

This is a more in depth look at the segments, the header file just calls the functions but the .cpp file
actually writes the functions. There is not much to write about this as this is a well commented piece
of code. If there is more time, I will add to this document a run through of the code, for now I’ll just
add the relevant pieces for me. The main focus of this code is to add in various pieces to the segment
that are not covered by the simple initial base. These include physical corrections, such as materials
and scattering effects.

The code initially uses helix base to build up segments. In conjunction with this, it introduces
variables for monitoring the propagation and where that is taking the track. These are going to be
important when looking at ϕ and z windows. For the side of the efficiency, variables such as hit found
and hits in layer are introduced. These are used in order to give diagnostics on the segment. The final
point of interest is the ns, nh variables. ns represents the number of shared segments or rather the
number of segments that intersect this segment. nh represents the number of shared hits, the number
of hits in a segment that are shared by other segments. nsg is the same as ns but in a more general
sense, it is the number of segments in a cluster of segments, that this segment is connected to. And
nhg is the number of hits in the group.

7 Install and Compilation

7.1 Things to remember

• source /cvmfs/sft.cern.ch/lcg/views/LCG 102/x86 64-centos7-gcc11-opt/setup.sh

• cmake

• make

• make clean

• make install

7.2 Event display

13

	Overview
	mu3eTrirec - Main Branch
	Overview
	To Add
	Segs Tree
	runId
	eventId
	n
	ndf
	nhit
	r
	rerr2
	p
	perr2
	chi2

	Segs MC Tree
	Overview
	mc
	mc_prime
	mc_type
	mc_pid
	mc_tid
	mc_mid
	mc_p
	mc_pt
	mc_phi
	mc_lam
	mc_theta
	mc_vx
	mc_vy
	mc_vz
	mc_vr
	mc_vt

	Frames Tree
	Overview
	runId
	eventId
	weight
	n
	n3
	n4
	n6
	n8

	mu3eTrirec - Efficiency Branch
	Overview
	To Add
	Segs Tree
	

	mu3eEfficiency
	Overview

	Tables
	Numbering
	Helix Parameters
	Chi Squared versus p-value
	Conversion Equations

	Code
	Write about
	float.hpp/double.hpp
	Overview
	Conversions
	Vector Operations

	HelixBase.h
	Overview
	Helix Generation

	TripletBase.h
	Overview

	SegmentBase.h
	Overview

	segment.h/.cpp
	Overview

	Install and Compilation
	Things to remember
	Event display

