
Installation and Compilation of the Software

March 23, 2023

1 Container

The purpose of using containers in this context is to have full control over the dependant software for
Mu3e. In the HEP environment there was some issues with the event display as it needed a package
called Cairo for some plotting function. If you are working on your own laptop that runs a linux based
operating system then this is largely irrelevant. There are some fundamental issues with Centos and
how it runs so for the container that was run here, opensuse was used. There is a definition file that
can be used to do all of these actions at once. This appeared not to work in my environment but is
always worth a try, as it means the software and it’s relevant dependencies are installed in one go with
no manual involvement. I will leave a link to the file on the wiki. It should be noted in the following
recipe, some of the double dashes that indicate an option in the command line format to a single long
dash, I will attempt to fix this.

Find below the commands required to set up a container that runs the software:

• singularity build –sandbox mu3e docker://opensuse/leap

– This pulls an image from the docker hub and constructs a sandbox, from which a shell can
be run. This shell is isolated from the rest of the environment which is why dependant
software can be installed without sudo commands safely.

• singularity shell –fakeroot –writable mu3e

– This opens a shell based on the newly built directory, this runs opensuse and this is where
we work.

• cd /

– This takes us to the directory.

• zypper –non-interactive update

– This just updates any pre-installed libraries.

• zypper –non-interactive install libboost filesystem1 66 0-devel libboost program options1 66 0-
devel libboost system1 66 0-devel libexpat-devel cfitsio-devel cmake eigen3-devel gcc9-c++ gcc-
fortran git git-svn gsl-devel gzip libxerces-c-devel libXmu-devel libXpm-devel libXft-devel libxml2-
devel libopenssl-devel libpng12-0 libfftw3-3 libgsl23 libX11-devel libXext-devel openjpeg-devel
patch tar tbb-devel uuid-devel vim wget gtkmm3-devel fmt-devel Packagekit-gtk3-module libcanberra-
gtk3-module pango-devel libpangomm-1 4-1 fontconfig

– This installs all of the minor dependant software required.

• zypper –non-interactive si boost

• zypper clean

• wget https://www.python.org/ftp/python/3.11.2/Python-3.11.2.tgz

– We now install python.

1



• tar -zxvf Python-3.11.2.tgz

– Unzip

• cd Python-3.11.2

• ./configure

• make

• make altinstall

• cd ..

• rm Python-3.11.2.tgz

• wget https://root.cern/download/root v6.28.00.source.tar.gz

– Now Root

• tar -zxvf root v6.28.00.source.tar.gz

• rm root v6.28.00.source.tar.gz

• mkdir build-root

• mkdir install-root

• cd build-root

• export CC=/usr/bin/gcc-9

– This path might be different for other people, but the initial forward slash should just take
you to the opensuse directory, not your home directory. If it does then the fix is to add the
path to the opensuse directory to the front of it.

• export CXX=/usr/bin/g++-9

– Again if the issue arrises, do the same thing.

• cmake -DCMAKE INSTALL PREFIX=../install-root \

• -DCMAKE CXX STANDARD=17 -DCMAKE BUILD TYPE=Release \

• -DPython3 ROOT DIR=/Python-3.11.2 -DPYTHON EXECUTABLE=/usr/bin/python3 \

• -DLLVM CXX STD=c++17 -Dxrootd=OFF \

• ../root-6.28.00

– The options here give paths to various dependencies, the options are not double dashed,
the backslash keeps all of the cmake options on the same command.

• make -j$(nproc)

• make install

• cd /

• rm -rf build root/*

• rm -r build-root

• rm -rf root-6.28.00/*

• rm -r root-6.28.00

• zypper clean

2



• git clone https://gitlab.cern.ch/geant4/geant4.git

• mkdir geant4-build

• cd geant4-build

• cmake -DCMAKE INSTALL PREFIX=/geant4-install -DGEANT4 INSTALL DATA=ON \

• -DGEANT4 USE QT=OFF \

• -DGEANT4 USE OPENGL X11=OFF \

• ../geant4

– The options here give paths to various dependencies, the options are not double dashed,
the backslash keeps all of the cmake options on the same command.

• make -j$(nproc)

• make install

• rm -rf /geant-build/

• rm -rf /geant4/

• zypper clean

• git clone git@bitbucket.org:mu3e/mu3e.git

– This clones the mu3e software into the directory, this is for the dev branch I think. Just
change this to whatever branch you want to clone.

• cd mu3e

• git submodule update –init –recursive

• mkdir build

• mkdir installation

• cd build

• cmake -DCMAKE C COMPILER=/usr/bin/gcc-9 -DCMAKE CXX STANDARD=17 \

• -DCMAKE CXX COMPILER=/usr/bin/g++-9 \

• -DCMAKE INSTALL PREFIX=../installation -DMU3E TRIREC DISPLAY=ON ..

– Remember the two dots at the end otherwise it will compile wrong.

make -j$(nproc) make install

That completes the install, the final step is to use the shell script provided to set up the terminal with
the mu3e environment. I have provided the shell script below, place this in the run directory of the
mu3e environment found at /mu3e/run. Everything should now be set up, any problems, let me know.

3


	Container

