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Previous Work
• Characterise an arbrtrary magnetic field in terms of it’s multipole

expansion and generalised gradients to produce an analytical description

of field as a fuction of the longitudinal coordinate

• Use the analytical expression in differential algebra or Lie algebra code to

generate a Taylor or Lie (symplectic) map for the dynamics inthe magnet.

• Evaluate the analystical expressions to perform a numerical integration

giving a fast particle tracking code to describe the evolution of the

canonical coordinates within the magnet.

• The C++ code that has been has been written has a modular structure

which facilitates extending the code

• A Synchrotron Radiation Module is being implemented which calculates

the synchrotron emission from a particle into an arbitrary aperture

• eg ILC Helical undulator
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Advantages of an Elliptical Field Map

• The accuracy of the analytical field, increases exponentially inside the

initial cylinder.
• It helps to have the initial cylinder as large as possible.

• In many situations an elliptical field map has advantages:

• Wiggler sytems, where the gap height is much smaller then the

horizontal aperture.
• EMMA: The beam excursion is larger horizontally, than vertically.
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Elliptical Coordinate System (u,v)

Ellipses have common foci at±f
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The General Scalar Potential

x = f cosh(u) cos(v), y = f sinh(u) sin(v)

In cylindrical coordinates:

Ψ(x, y, z) =

∞∑
m=0

∫
∞

−∞

dk Gm(k) exp(ıkz) exp(ımφ)Im(kρ)

In elliptical coordinates:

Ψ(x, y, z) =

∞∑
m=0

∫
∞

−∞

dk Gm(k) exp(ıkz)Cem(u, q)cem(v, q)

Gm(k) are arbitrary coefficients, and the productCer(u, q)cer(v, q) forms a

complete analytical function in(x, y) - similarly with exp(ımφ)Im(kρ).

Cem(u, q) andcem(v, q) are Mathieu functions,

q = −
k2f2

4 is related to the longitudinal wave vector,k
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Connection Coefficients

Additionally, there exists identities between ellipticaland cylindrical

functions:

Cer(u, q)cer(v, q) =
∞∑

m=0

αr
m(k)Im(kρ)cos(mφ)

and

Ser(u, q)ser(v, q) =

∞∑
m=0

βr
m(k)Im(kρ)sin(mφ)

The key to calculating generalised gradients from an elliptical fieldmap lies
in solving the Mathieu equations and calculating the connection coefficients,
αr

m(k) andβr
m(k).
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Mathieu Functions

d2Q

du2
+ [a − 2q cos(2v)]Q = 0

also, the modified Mathieu function:

d2P

du2
− [a − 2q cosh(2u)]P = 0

We need solutions to the Mathieu equation that are periodic in 2π and these

solutions only exist for certain specific values of the separation constant,a.

There are two sets of solutions that are even or odd,an(q) andbn(q)

Note that ifλ = −[a − 2q cos(2v)] the Mathieu equation can be written

d2Q

du2
− λQ = 0

which if λ < 0 gives the equation for a harmonic oscillator, so we would

expect oscillatory behaviour from the solution.
If λ > 0, the equation is similar to the Schrodinger equation in a tunnelling
region, so we would expect the solution to decay exponentially.
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λ functions for sen(v,−2)
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Mathieu Solutions,se2(v,−2)
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Mathieu Solutions,se1(v,−2)
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λ functions for cen(v,−300)
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Mathieu Solutions,ce2(v,−300)
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Numerically Integrating Mathieu Equations

• An Adams predictor-corrector integrator was used to solve the Mathieu

equations
• Accurate to∼ O(h11)

• Probably overkill, but I had problems with lower order integrators -

needs optimising

• If you need a numerical integrator, see me

• By making use of symmetries in the solutions, we only need to integrate

the Mathieu functions from 0 toπ/2

• Furthermore, when the equation is in a ’tunneling’ region wecan insist

that the function doesn’t grow

• When the solution does integrate to2π in a stable manner we can check

the periodicity conditionQ(0, q) = Q(2π, q)

• Gives reassurance that the separation coefficients are calculated

accurately
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Normalising the Mathieu Equations

Like their trigonometric counterparts, the functionscen(v, q) andsen(v, q)

and are normalised so∫ 2π

0

dv cem(v, q)sen(v, q) = πδmn

By simultaneaously solving this equation and the Mathieu equation, the

normalisation constant can be found.
Similarly, the modified Mathieu equation needs integratingand normalising to
find the solutionsCem(u, q) andSem(u, q).
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Calculating the Connection Co-
efficients

There are well known equations for calculating the connection coefficients of

the form:

α2n+1
2m+1 = g2n+1

c (k) A2n+1
2m+1(q)

where,

g2n+1
c (k) = [ce′2n+1(π/2, q)ce2n+1(0, q)]/[kfA2n+1

1 (q)]

andAn
m(q) is the Fourier coefficient of the Mathieu solution,cen, i.e.

cen(v, q) =
∞∑

m=0

Ar
m(q)cos(mv)
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Calculating the Generalised Gradients

Nearly ready to calculate the generalised gradients,Cl
m

In cylindrical form:

C [l]
m,s(z) =

il

2mm!

∫
∞

−∞

dk exp(ikz)kl+m−1 b̂m

I ′

m(kR)

b̂m are the 2D fourier coefficients of the field map. and in elliptical form:

C [l]
m,s(z) =

il

2mm!

∫
∞

−∞

dk exp(ikz)kl+m

∞∑
r=0

βr
m(k)

Fs
r (k)

Se′r(U, q)

Here, to findFs
r (k) we perform a Fourier transform in the longitudinal (z)

axis, to findF(v, k) and in the elliptical (v) axis we perform the integration:

F
s
r (k) =

1

π

∫
∞

−∞

dv ser(v, q)F(v, k)
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Numerical Benchmarkingwith a Monopole Doublet
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On-Axis Field Comparison,By
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On-Axis Field Comparison,By
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Future Work
• Describe the Field from the EMMA magnets in terms of GGs

• Presently, the large excursion transports the particle outside the

bounding cylinder where numerical innacuracies grow unacceptably

large

• Comparison with Yoel’s work

• Application for helical undulators?

• Work on synchrotron emission (ILC) undulators still ongoing
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