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Generalised Gradients

For a periodic structure, a general scalar potertitthat satisfies Laplace’s equation, (a
cylindrical harmonic or multipole expansion) can be wntte

U = Z_O /_O:O dk Gm (k) exp(1kz) exp(emae)Im (kp)

I, are the modified Bessel functions which can be expressed agar €xpansion:

> 1 N\ 2L+m
Im (@) = LZ:O Li(m + L)! (5)

andG,, (k) are arbitrary coefficients.
From this, the vector potentials can be written as:

Ap =0
= cos(m¢) O sin(mg¢) O
Ap = w,s — w,c
0 mZ:l —p—tho, —— oY,
= cos(m¢) 0 sin(m¢) O
A, = — w,s w,cC
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Numerical Techniques

Cubic Spline Approximations

Periodic Cubic Spline Approximation

Fourier Transforms
 Discrete and Spline Based

Bessel Functions

Numerical Benchmarking
* Monopole Doublet Field
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Cubic Spline Approximations

 Cubic splines are piecewise third-order polynomial fitsa foinction f (),
with specific continuity conditionsat each point

* Polynomials on succesive intervals are matched suchfthas
continuous first and second derivatives at each point.

* The derivatives are calulated using the points either sidg o

* This means at the end points the derivatives cannot be asdclil
» Source of numerical innaccuracy close to the endpoints
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Test Function
flz)=1-2z*

over the interval—1, 1]
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Test Function
flz)=1—2"

Residuals of the spline approximation

Large errors can occur at the end points
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Periodic Spline Approximation
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Fourier Transforms

Recall, that a general scalar potential can be written
v=3Y / dk G, (k) exp(1kz) exp(umd) L, (kp)
m=0" —°

 This calls for an continuous fourier transform over the i
[z = —00, 2 = 0.

* If the field only has support over an interval [a,b], a defimiegral can be
calulated numerically

A discrete fourier transform can be performed, howeves #ssumes the
field is represented by a set dfunctions

 Using the spline approximation to the field, a continuousiruransform
can be evaluated exactly
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Fourier Transforms

A cubic spline fits a polynomial(z) = ag + a1z + a2* + a3z3
over each intervalz;, z; +1]|. The fourier transform
1 Zi4+1
g(k) = —/ dz exp(—ikz)g(z)
21 J,.
can be integrated by parts to give
1 1 1 1 [*+

() = o ep(k2)g (T + oo | de exp(—ike)g (2

This expression contains two terms, the first part contgiaipower if%
which can be solved exactly, and a second term involving eagra; over the
first derivativeg’(z2).

The second term can again be integrated by parts, to giveieasgrpression
(with 1 more power o%), and this process can be repeated as long as the
higher derivatives of(z) exist.
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Fourier Transforms

For a cubic polynomial after 4 repetitions, the fourier storm ofg(z)
calculated exactly.

. 1 [?
f(k) = %/a dz exp(—ikz)f Zgn

note thatg,, has four terms each contaning a further poweaﬁquwhich guar-
antees thaf (k) falls to zero for largek
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Fourier Transforms

— Real

— Exact Real

— Discrete Real
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Fourier Transforms

The spline fourier transform is four orders of magnitude enaccurate than
the DFT
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Numerical Benchmarks

Consider a monopole doublet, with two magnetic monopolestrehgth g:

On the interior of a cylinder the field at all points satisfies
V-B=0andV x B =0
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Numerical Benchmarks

The field produced has a rapid spatial variation and is exacilvable.
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Furthermore, the fourier transform and the on-axis gems&dlgradients can
be calculated analytically
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Monopole Doublet FT
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Monopole Doublet FT
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Monopole Doublet FT
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Monopole Doublet Field

— Field Data
— Analytical

Numerical Techniaues for Calculatina Generalised Gragdiem.18/20



Monopole Doublet Field

— Field Data
— Analytical
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Monopole Doublet Field

— Field Data
— Analytical
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