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Previous Wor k

* Characterise an arbrtrary magnetic field in terms of it'stipole
expansion and generalised gradients to produce an aralgléscription
of field as a fuction of the longitudinal coordinate

« Use the analytical expression a differential algebra ordlgebra code to
generate a Taylor or Lie (symplectic) map for the dynamidhewiggler.

* Evaluate the analystical expressions to perform a nunientsgration
giving a fast particle tracking code to describe the evolubf the
canonical coordinates within the magnet.

* The C++ code that has been has been written has a modulaustruc
which facilitates extending the code

« A Synchrotron Radiation Module is being implemented whialtalates
the synchrotron emission from a particle into an arbitrargréure

* eg ILC Helical undulator
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Synchrotron Radiation Calculation

Accelerated charges radiate energy. The observed el@ieldof the emitted
radiation is:
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| mplementation

An arbitrary number of onserving points are define
at initialisation. At each step of the tracking code, 1
Electric Field is by estimating the radius of curvatu
of the particle (using the two adjacent integration
steps) and calculating

- -

At the end of the integration the differential intensit

found by performing a DFT on the electric field co
ponents.
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Benchmarking

Consider an electron accelerated by a constant magnetlc fretircular
motion (F = ¢& x B).

For an electron following a trajectory of radius R, in the xame, The
frequency distribution of the emitted radiation is
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Benchmarking Procedure

* Starting with a constant magnetic fiel&{ = 1 T), model the field in
terms of it's generalised gradients, produce analyticatdptions of the
field and numerically integrate the motion of the particletigh the field.

« £ =100 MeV
* R=33.3333 cm
« L=10cm
* 10000 integration steps
* At each integration step calculated the electric field olesgin an

aperture, fourier transform the field to produce the freayeshstribution
and compare with the analytical description
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Particle Tracking
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Electric Field
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Frequency Distribution
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Frequency Distribution
N=65536
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Frequency Distribution
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Fast Fourier Transform

* The standard C++ library FFTW is used to perform the founansform.
 Typical transform times for N steps:

* N=262144, 4 seconds

* N=35, 000, 000, 13 minutes

Using N=262144 steps (analytical values in brackets)
Peak intensity3 - 298.10733 (3 - 299.10733) J Sr~1
Peak Frequencyt - 273.101° (1 - 297.10%°)s
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Conclusion

* Problem with strobing in the fourier transform
* No idea why this is - need to investigate

 Also present in the x transform if not done carefully
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Conclusion

* Synchrotron calculation gives a good result compared tanafy#cal
calculation

* Problems still with the fourier transform (not robust) wihigeed solving

* Lots of scope to optimise the algorithm

- Radiation is beamed in a cone with angdey=2 ... donj't need to
calculate each point at each step.

* Implement spline (fast) fourier transform? Don’t need tamy@bout
unequal step size in t

* Need to optimise the parameters for a specific field map

* Benchmark on the ILC Helical Undulator
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