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Generalised Gradients

For a periodic structure, of perio¥l,,, a general scalar potenti&lcan be written:
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I, are the modified Bessel functions which can be expressed agar Expansion:
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() = L;O Li(m + L)! (5)

anda., andb,, are arbitrary coefficients.
From this, the vector potentials can be written as:
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Field M apping

Suppose the radial component of the magnetic fi¢Jds known, on the
surface of a cylinder of radiug, then the field can be fitted in terms of a
Fourier series:

By(p=R,¢,z) = Z b (R, 2)sin(mae) + am (R, z)cos(md)

m=0

The coefficientsi,, (b,,) correspond to normal (skew) components of the
field, and the integern, is the order of the multipoles, i.e. m=0 corresponds
to a solenoid component, m=1 represent the dipole comppmeri a
guadrupole etc.
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Field M apping

To calculate the generalised gradients, the Fourier seoeficients are
scaled by the derivative of the Bessel function and a 'fodvaourier
transform is performed.

- [, 1 o0 kL—i—m—l N
CIEl (2) = ! / dk exp(ikz) b

ST ompl 2 f I' (kR)
and
- L o0 L+m—1
I () = e ;

C}ﬁ}a(z) IS the L th derivative with respect to z of the generalised gradients
Cr.a(2)
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Field M apping

The generalised gradients can then be used to calculatetharpotential at
any point within the volume of the cylinder, and thus the netgnfield, i.e.

B,= ) Y-yt ek
_ 2L 7| v
m=0 L=0 2 L L+m)

x Gl p?P 1 (sin(me) + cos(m))

note that along the z axip & 0.0), only them = 1, L = 0 components
contribute to the field, and the generalised gradi€fits(z) andC? ()
correspond to the field componery and B, along the z-axis.
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Coordinate Transfor mation

Generally more usual to work in a Cartesian basis, so we reetdrisform
the representation of the field from cylindrical coordirsafe ¢, z) to
Cartesiang, v, z).

The Generalised Gradients, give the on-axis fiele=(x = y = 0) and are
dependent only on z, so these do not need transforming.

The transformation can be achieved using the identities:

X = p CoS @ Yy = p sin ¢
p2L _ (.732 4+ yQ)L
p™" cosmep = R(x + 1y)™ p" sinme = I(x +0y)™

and
Ay =A,cos9, Ay = A,sin ¢
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Coordinate Transfor mation

e.g for a pure, normal dipole (m=1), the scalar potential is:

\Ij(aj7 Y, Z) — Sin(qb)qjl,s(p? Z)
where

T1,4(p, 2) = CLa(2)p — (1/8)CYL(2)p" + (1/192)C1 (2)p° + . .

U(z,y, 2) = yOro(2)—(1/8)y(x2+y*) O (2)+(1/192)y(z*+y?) 2O (2)+. .

These transformations give the scalar and vector poteadialell as the
magnetic field in Cartesian coordinates.
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Guage Transfor mation

Finally, to simplify the integration process, a guage tfamgation can be
made on the vector potential such that:

A(x,y,z) + VA=A(x=0,y,2)

where
= Z A c(p, 2) cosme + Z A s(p, 2) sinmao
m=0 m=1
and
A = S (Db g ) ot
e 22LLNL + m)! ™
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Guage Transfor mation

eg, for a skew dipole

AL = zy(1/2)C1(2) — (23 — 29®)(1/24)CEL(2) + ...

oA

Ox
By setting&[?‘jflL2 (z) = (1/12)C O‘“]( ) and summingd’, + % the leading
term of A, disappears. i.e.

= 3xySy.(2) — (1/16)(4z%y + 1224%)S50(2) + . ..

ox
Ay = A+ = = —(1/48)(ey ~ 2y )C2(2) + . ..
In the new guagel; + 5% = A, andA’ + 32 = A,

This process can be iterated such tHat= 0, to any arbitrary order
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Symplectic I ntegrator

AV AN AV P?
e (-2 Yo (-2 Yoo (57 (54, ) )
P? Ao B2
. Yy : —1 . _ x :
A, exp ( A02(1+5) > A, exp(. 5 ( (5+2(1+5)>.>

( AN ) ( AN )
exp :—TCLZZ exp :—7PZ:

.7 N\Nf_ Of OH _ Of 0H
Where(_ : H )f  0q; Op; _ Op; 0q;

and the operatord,, and A, " involve the vector potential?

Giving the transfer map:

Mfi(xppxa Y, Pys < 5) — ff(xvpxa Y, Py < 5)
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Cesr Wiggler Field Map

350
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Cesr Wiggler Tracking
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ILC Heaical Undulator Fied
Map

Helical Undulator By/T
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|LC Helical Undulator Tracking
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|LC Helical Undulator Tracking
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Emma Field Map
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Emma Tracking
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To Do...

* Comparison of EMMA Transfer Map with the work of Yoel, Stefan
Tzenov

* Look at Applications to EMMA lattice

* Possibility of tying in the ILC undulator tracking code wi#PUR
(synchrotron radiation code)

« Continue to test and optimise the code.
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