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Abstract

Analytic descriptions of arbitrary magnetic fields can be
calculated from the generalised gradients [1] of the on-axis
field. Using magnetic field data, measured or computed on
the surface of a cylinder, the generalised gradients can be
calculated by solving Laplace’s equation to find the three-
dimensional multipole expansion of the field within the
cylinder. After a suitable transformation, this description
can be combined with a symplectic integrator allowing the
transfer map to be calculated. A new tracking code is under
development in C++, which makes use of a differential al-
gebra class to calculate the transfer map. The code has been
heavily optimised to give a fast, accurate calculation of the
transfer map for an arbitrary field. The multipole nature of
the field description gives additional insights into fringe-
field and pseudo-multipole effects and allows a deeper un-
derstanding of the beam dynamics.

INTRODUCTION

Venturini and Dragt [1] give a prescription to describe a
magnetic field or potential in terms of it’s cylindrical har-
monics and Taylor expansions. Such a description gives
an analytical description of the field in the transverse plane
with a longitudinal dependence on the generalised gradi-
ents of the field - that is, the numerically calculated on-
axis components of the field gradients. The resultant field
map satisfies Maxwell’s equations and automatically in-
cludes fringe field and non-linear terms. A code has been
written in C++ which utilises a fast Fourier method to cal-
culate the generalised gradients for an arbitrary magnetic
field along a straight beam line. Being able to describe
the fields analytically allows rapid calculation of transfer
maps using a suitable analytic integration scheme and, to
this end, a specialised differential algebra template class
is used to describe the transverse field components which
offers significant time savings over similar, more general,
codes. A second order symplectic integration scheme [2]
is implemented to allow numerical or analytical compu-
tation of the canonical phase space vector from an initial
state to the final state. The modular design of the code
gives a straightforward method of adding further function-
ality to the code, or inserting alternative components: i.e.
user-defined analytical descriptions of the field, alternative
integration schemes etc. As an example an additional mod-
ule has been added to describe the synchrotron radiation
emitted by a particle as it traverses the field (see [3]).

CODE DESCRIPTION

Field Description

For a periodic structure, a general scalar potential that
satisfies Laplace’s equation, (a cylindrical harmonic or
multipole expansion) can be written:
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Gm(k) are arbitrary coefficients andIm are the modified
Bessel functions which can be expressed as a Taylor ex-
pansion:
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From equation 1, the vector potentials can be derived:
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, and equations 1 and 2 can be used to expressψm(ρ, z) as
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∞
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dk k2l+|m|Gm(k) exp(ıkz) (4)

or

ψm(ρ, z) =
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ρ(2l+m)C [2l]

m (z) (5)

where theC [n]
m (z) are the on-axis generalised gradients.

Suppose the radial component of the magnetic field,Bρ,
is known on the surface of a cylinder of radiusR, then the



field can be fitted in terms of a Fourier series:

Bρ(ρ = R, φ, z) =
∞
∑

m=0

âm(R, z)cos(mφ) + b̂m(R, z)sin(mφ) (6)

The coefficientŝbm (âm) correspond to normal (skew)
components of the field, and the integer,m, is the or-
der of the multipoles, i.e. m=0 corresponds to a solenoid
component, m=1 represent the dipole component, m=2 a
quadrupole etc.To calculate the generalised gradients, the
Fourier series coefficients are scaled by the derivative of
the Bessel function and a Fourier transform is performed.

C [l]
m,s(z) =

il

2mm!
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dk exp(ikz)
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b̂m (7)

and
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m,c(z) =

il

2mm!

∫ ∞

−∞

dk exp(ikz)
kl+m−1

I ′m(kR)
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C
[l]
m,α(z) is thel th derivative with respect to z of the gener-

alised gradientsC [0]
m,α(z). Equations 3, 5, 7 and 8 can then

be used to calculate the vector potential at any point within
the volume of the cylinder.

The magnetic field can be derived from the vector po-
tentials, and transformed into Cartesian coordinates in an
arbitrary gauge (see reference [4] for details). The field is
therefore fully described in terms of it’s multipole modes
and the generalised gradients. Furthermore the algorithm
has a smoothing quality - numerical inaccuracies in the ini-
tial field are smeared out. The modified Bessel functions,
Im(kz), in equations 7 and 8 mean the errors shrink expo-
nentially as the radial distance to the axis decreases.

Differential Algebra Template Class

A ’stripped-down’ differential algebra template class has
been written which allows polynomial expressions to be
defined with an arbitrary number of variables to arbitrary
order. The standard mathematical operators have been de-
fined as well as methods for differentiation, integration, ex-
ponentiation and the trigonometric functions. Expressions,
differing in the degree and number of variables (explicit
instances), can be used in the same code and conversion
between explicit instances is allowed. The field descrip-
tion is initially calculated in two variables (x,y) to order
eight. Transforming to a suitable gauge (i.e.Ax = 0) re-
sults in a field map accurate to order six and the integration
of the phase space vector therefore requires an expression
in six variables to order six. The ability to mix, and con-
vert between, classes of expressions allows a fast, efficient
calculation of the final dynamical map.

Symplectic Integrator

A second order symplectic integration scheme
[2] has been implemented which calculates the Lie

map,M , to transform the canonical phase space vector
(x, px, y, py, s, δ) from an initial to a final state for an
integration step∆σ:
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whereax,y,z(x, y, z) = qAx,y,z(x, y, z) and

Ay = exp

(

: −

∫

ay(x, y, z)dy :

)

This integrator was developed to allow accurate track-
ing through s-dependent magnetic fields (where s is the
longitudinal coordinate of the reference particle). Many
magnetic elements are modelled using an impulse bound-
ary approximation, where the magnetic field is assumed
to be constant (s-independent) inside the magnet and zero
elsewhere, which allows the charged particle Hamiltonian
to be separated into drift and kick regions. However in
many magnetic systems(i.e. wigglers and undulators) the
s-dependence of the magnetic field cannot be accurately
modelled in this way - the fringe fields play an important
role in the charged particle dynamics. The analytical de-
scription of the field, described above, explicitly includes
fringe field contributions and this symplectic integrator is
well suited to describing the charged particle dynamics of
such a field.

MODELLING THE CESR-C WIGGLER

To demonstrate the techniques mentioned above, the
code was used to model the CESR-c wiggler using sim-
ulated field data on a rectangular grid (REFERENCE). A
3D spline interpolation code was used to calculate the ra-
dial magnetic field (Bρ) on the surface of a cylinder with
a radius of2.6 cm with 49 evenly spaced points in the az-
imuthal direction and 8192 points in the longitudinal (z)
direction. A fast Fourier transform of this field was per-
formed to find the coefficientŝam andb̂m which were used
in equations 7 and 8 to calculate the generalised gradients.
Figure 1 shows the calculated normal and skew compo-
nents of the generalised gradientC0

1 (the dipole compo-
nent), which corresponds to the on-axis field in the y and
x direction respectively. Because the field is calculated
to some finite order (sixth, in this case) the field expan-
sion is truncated, and the higher order components are not
included, although the number of terms can easily be in-
creased giving greater accuracy in the final result.
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Figure 1: TheC0
1 normal(red) and skew(blue) dipole com-

ponents of the generalised gradient for the CESR-c wiggler.
These components are identified with the on-axis fieldsBy

andBx

Figure 2 (left) shows the initial interpolated field map on
the surface of a cylinder.Figure 2 (right) shows the residual
difference between the interpolated field and the calculated
field. The maximum difference is2.10−4 T, and this differ-
ence will shrink exponentially as the radial distance to the
axis decreases. Outside the cylinder the uncertainties will
grow exponentially, and therefore the error in the calculated
field will grow rapidly.

Finally the analytic field description was used with equa-
tion 9 to calculate the transfer matrix and track the evolu-
tion of the dynamical variables. The energy of the elec-
tron was set to 5 GeV and 10,000 integration steps were
used. At each integration step the field components and the
Lie map,M, were calculated resulting in a transfer map
for the entire magnet. The field components, calculated
at each step, were written to a file, so the particle track
could be quickly calculated numerically given any initial
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Figure 2: Left: TheBρ component of the magnetic field
on the surface of a cylinder for the CESR-c wiggler. This
field is used to calculate the generalised gradients at any
point within the cylinder. Right: The residual field of the
input field (left) and that calculated using the generalised
gradients. on the surface of the cylinder.

state. Figure 3 shows the evolution of the canonical coor-
dinates (x, px) over the length of the magnet for an initial
state (0, 0).

Figure 3: The evolution of the canonical coordinates (x, px)
of a 5 GeV electron as it traverses the CESR-c wiggler. The
trajectory was integrated over 10,000 points.

CONCLUSION

A new C++ code to describe arbitrary magnetic fields
and calculate the dynamical variables of a charged parti-
cle within such a field has been developed. The code is
designed to a fast accurate method of describing charged
particle dynamics. In the given example, for a 4.8 m wig-
gler magnet, the field was interpolated at 49x8192=401,408
points on the surface of a cylinder. This field was used to
numerically calculate the generalised gradients for the mul-
tipole components up to the 12th pole, and an analytical
description of the transverse field. Finally the field descrip-
tion was used to analytically and numerically integrate the
phase space vector (to second order in the Hamiltonian and
sixth order in the field description) over the length of the
magnet using 10,000 integration steps. The whole calcu-
lation took under 8 minutes with a 2.66 GHz processor.
The code modular, so additional functionality can easily be
added. Further examples of the applications of this code
and an example of a module to calculate synchrotron radi-
ation are described in [3].
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