

ALICE Commissioning Results Update

David Holder The Cockcroft Institute and the University of Liverpool Department of Physics.

25th February 2009

Accelerator Science and Technology Centre

Outline

- Update on progress since October 2008:
 - Energy recovery;
 - Coherent terahertz radiation.
- Current status:
 - Ceramic processing;
 - FE from wafer.
- Future plans.

Reminder (the other ALICE....)

ERLP (Energy Recovery Linac Prototype)

 – conceived as a prototype of an energy recovery-based 4th generation light source...

now called...

ALICE (Accelerators and Lasers In Combined Experiments)

- An R&D facility dedicated to accelerator science and technology development;
- Offering a unique combination of accelerator, laser and free-electron laser sources;
- Enables studies of photon beam combination techniques;
- Provides a suite of photon sources for scientific exploitation.

ALICE (& EMMA layout)

- 20th December 2008:
 - Gun voltage 230 kV (c.f. 350 kV nominal limited by Stanford ceramic);
 - Injector energy 4.8 MeV (correct ratio to full energy must be maintained);
 - Full energy 20.8 MeV (limited by SCRF cavity performance);
 - 100 µs train length;
 - 5 pC bunch charge

Linac cavity 1 and 2 gradient demand:

Pop-in dump in straight 4 intercepting the beam before reentering the linac

Linac cavity 1 and 2 gradient demand:

Pop-in dump in straight 4 removed -beam reenters linac - energy

recovery

Image of energy-recovered beam at dump

Energy recovery now routine

Energy recovery is now the normal mode of operation, to minimise uncontrolled beam losses.

- Gun voltage 200-230 kV/ 4.8 MeV/ 20.8 MeV;
- Next step longitudinal bunch compression to produce short bunches and terahertz radiation.

- Both linac cavities operated at about 10 degrees off-crest (energy chirp);
- Outward arc (arc 1) set for R₅₆ = 0;
- Bunch compression chicane $R_{56} \cong 25$ cm;
- Return arc (arc 2) set for $R_{56} \cong -25$ cm.

Terahertz beamline

Bolometer Signal vs Linac Phase

Bolometer Signal vs Bunch Charge

Current status

- HV processing issues:
 - Large HV psu current being drawn, even at 230 kV;
 - Operation briefly restricted to 200kV;
 - HV conditioning with krypton to remove field emitters from ceramic or cathode ball.
- Still a field emitter in the centre of the cathode wafer.

Current status

- Still a field emitter in the centre of the cathode wafer:
 - Do not want to risk further cathode damage by trying to process it away;
 - Do not want to risk cathode change with full gun bake cycle (previously problematical).
- Can however operate at 230 kV with the following provisos:
 - Use off-centre laser spot;
 - Separates the photo-emitted beam from FE beam (but both still accelerated by the booster);
 - Different solenoid focussing settings for photo-emitted beam and FE lead to further separation;
- Emittance at 230 kV/80 pC \sim 23 μ m;
- Shutdown (5-6 week) underway for installation of CBS/EMMA components.

Thanks...

