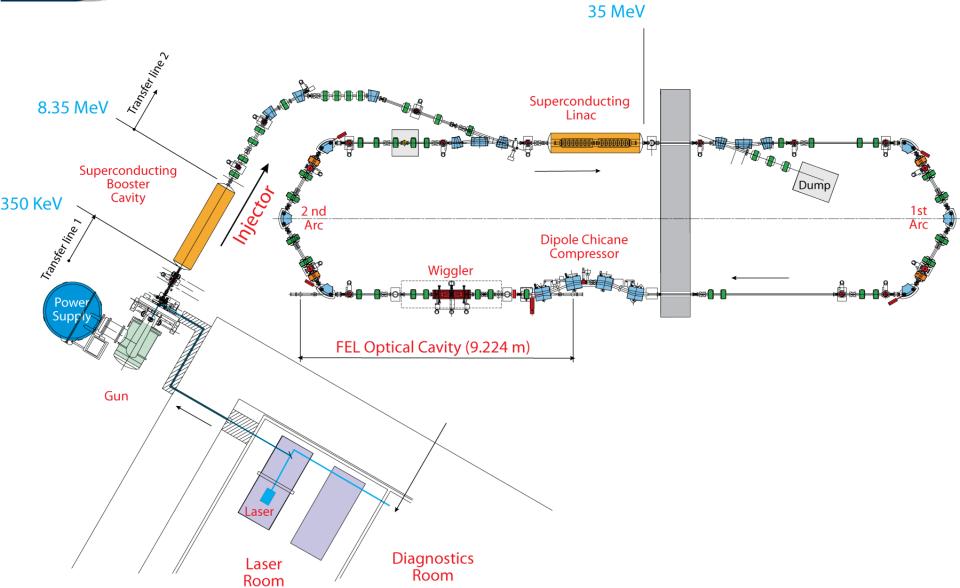


COBALD - An Inverse Compton Back-Scattering (CBS) Source at Daresbury

Accelerator Science and Technology Centre

Introduction to ALICE


ALICE (Accelerators and Lasers In Combined Experiments) - known formerly as ERLP:

- High-voltage DC photoemission electron gun;
- Superconducting linacs operating in energy recovery mode;
- A mid-IR free-electron laser (FEL);
- PLUS a source of ultrashort x-ray pulses produced by inverse Compton scattering of multi-terawatt 100 fs laser pulses by the electron beam.

Science & Technology Facilities Council

ALICE Layout

Nominal ALICE Parameters

•	Gun Energy	350keV
•	Injector Energy	8.35 MeV
•	Circulating Beam Energy	35 MeV
•	Linac RF Frequency	1.3 GHz
•	Bunch Repetition Rate	81.25 MHz
•	Nominal Bunch Charge	80 pC
•	Average Current	13 µA

Construction status

• Gun commissioned into test line - ready for HV conditioning mid-July 2008;

- Beam transport system complete;
- ·Both linacs and cryosystem ready to go;
- RF systems to be ready for ER in October;
- ·Installation of FEL, CBS, EO and THz beamlines underway.

Compton Back-Scattering

•Compton scattering of photons off a high-brightness electron beam:

- A collision between a photon and an electron;
- \cdot Or the electromagnetic field of the laser beam acts as a very short period undulator;

• Produces ultra-short pulse x-ray radiation from low-energy e⁻ beam;

• Collision geometry determines flux and energy.

COBALD

COmpton BAckscattering x-ray source driven by the multi-10 TW Laser installed at Daresbury

-		
	kHz-Laser	TW-Laser
wavelength	798 nm	802 nm
bandwidth	30 nm	13 nm
energy before compression	2.8 mJ	1500 mJ
energy after compression	2.2 mJ	860 mJ
pulse width	35 fs	98 fs / 35 fs
strahl ratio		0.6 - 0.8
M ²	01.2 x; 1.11 y	1.38 x; 1.45 y

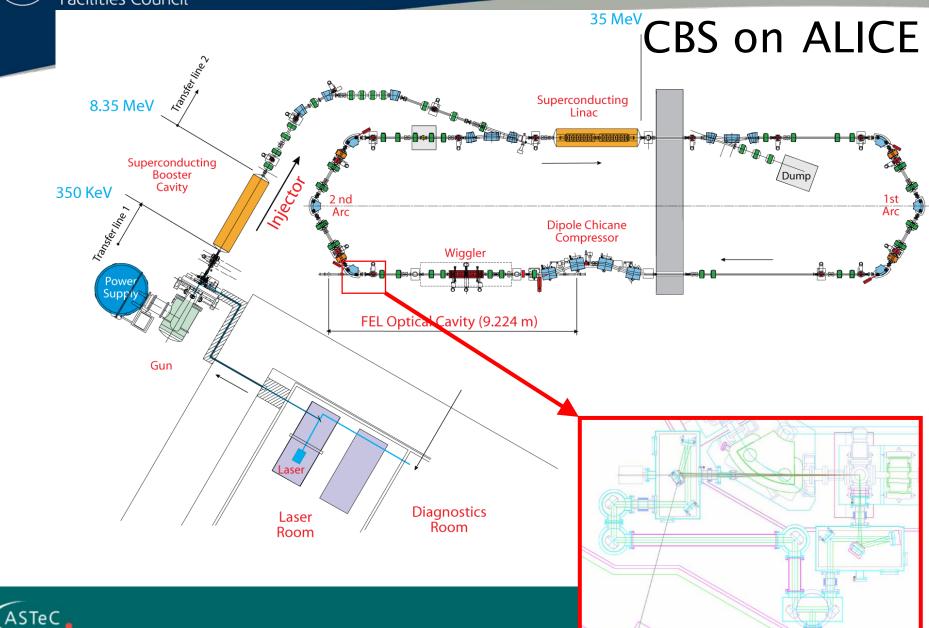
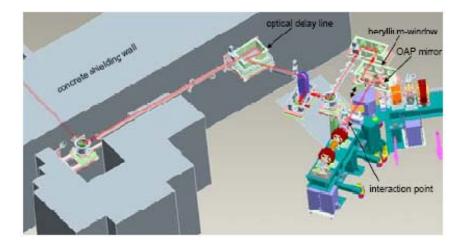
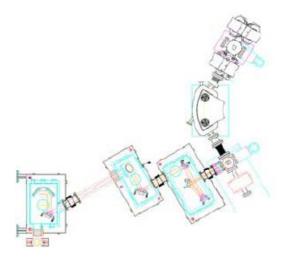
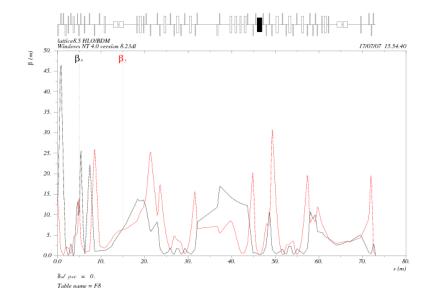

Fig. 2. Installation of the regenerative amplifier front end including pulse-picker and kHz compressor.

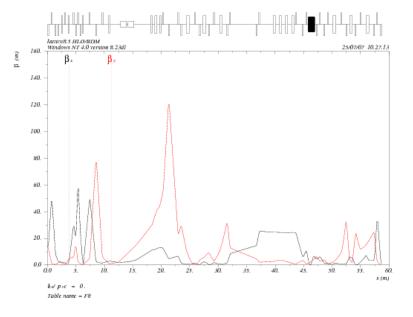
Fig. 3. Installation of the multi-pass power amplifier (left) and the chirped pulse compressor (right).



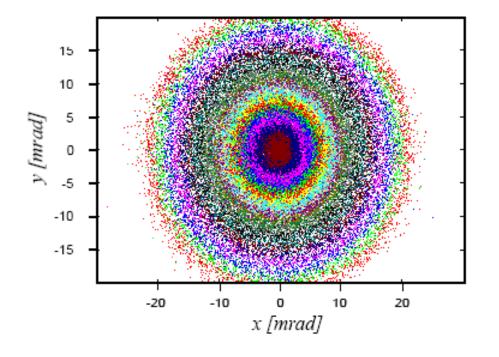

Science & Technology Facilities Council

Optics for both possible interaction angles: 180° "head-on" and 90° "sideways-on"


Constraints on lattice optimisation


- FEL wiggler to remain in place (\therefore no extra quadrupoles);
- Smallest possible transverse electron beam size at interaction point;
- After photon-electron interaction most of e⁻ beam must make
- it round the second arc;
- •Quadrupole gradients must be within existing power supply range;
- ·Beam size constrained by existing vessel;
- ELEGANT used, result:
 - Beam waist 21.5 × 39 μ m ($\sigma_x \times \sigma_y$);
 - \cdot 99% of the electrons make it to the pop-in dump.

Before and after (MAD)


ALICE and CBS parameters

Parameter	Value	Units	Parameter	Value	Units
Energy at interaction point	35	MeV	Brightness	>1020	photons/mm²/mrad²/ s/0.1% bandwidth
Train repetition rate	10	Hz	Peak x-ray energy	30	keV (head-on geometry)
Bunches per train	1			15	keV (sideways-on)
Bunch charge	80	pC	X-ray pulse length (rms)	350	fs (head-on geometry)
Electrons per bunch	5×10 ⁸			100	fs (sideways-on)
Average current	0.8	nA	X-ray source size (FWHM)	20 × 35	μm
Peak current	6.5	mA			

X-ray output

The angular distribution of the xrays for head-on collision geometry collision; each colour is a 1 keV energy band with 20-21 keV on outside and 30-31 keV at centre

Accelerator Science and Technology Centre