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Abstract cases, PyZgoubi routines are fast and reliable. However, an

The Non-Scaling Fixed Field Alternating Gradient ac_alternative approach based on dynamical maps could pro-
celerator EMMA has a compact linear lattice, in which thiylde some benefits, particularly where speed is important

effects of magnet fringe fields need to be modelled car or example, when tracking many particles through many

fully. A numerical magnetic field map can be generate ells. Dynamical maps also provide the possibility of read-

from magnet measurements or magnet design software. g‘ significant quantities (such as tunes and chromat®jitie
r

have developed a technique that produces from the num [egtly from th_e map, giving an insight into _the dynamics
ical field map, a dynamical map for a particle travelling in atis not provided directly by purely numerical methods.

a full EMMIA cell, for a given reference energy, without,. 0 SFR 28 VREEER e, oo B e,
acceleration. Since the beam dynamics change with eé]ﬁe rga netic field must be expressed in analytical form"
ergy, a set of maps have been produced with various refer- 9 P Y :

ence energies between 10 MeV and 20 MeV. For each rgn appropriate form can be obtained from a numerical field

erence energy, the simulated tune and time of flight have P by fitting an appropriate three-dimensional mode ex-

; : - : . ansion [6]. Then, we use a symplectic integrator imple-
been compared with results in Zgoubi - tracking directl mented in the differential algebra (DA) code COSY [7], to

through numerical field map. The range of validity of & ropagate a vector of six power series (one series for each
single map has been investigated by tracking particles W|8 the six dynamical variables) through the field.

large energy deviation: the results can be used to imple-
ment a model of acceleration based on dynamical maps.

DYNAMICAL MAP DESCRIPTION

INTRODUCTION The DA integration routine outputs the dynamical map in

. . . . . explicit form as shown in Table 1. The first column gives
In tracking studies, the behaviour of a single particle ca b g

fhe name of each coefficient following the TRANSPORT

be defined by six dynamical variables: the horizontal (Verc':ode nomenclature. The final six columns indicate, as ex-
tical) position X (Y) and momemtunPx (Py), the lon- ' :

o . . ) nents for the six dynamical variabl he terminthe m
gitudinal position with respect to a reference partigle ponents for the six dynamical variables, the te the map

and the energy deviatioh Tracking a particle through a to which the coefficient in second column refers. Thus,

sequence of madnetic elements in a beamline consistse%Ch variable is expressed as a power series in the values
9 9 St'the dynamical variables at the entrance of the cell. For

computing the values of these variables at different loca- . : o
. . . .. instance the expression for the horizontal position is:
tions or steps. If the numerical values of the magnetic field
components are known on grid points throughout the mag-x, = 1.0344 X, + 0.2683 Pxo — 0.0103 5o +

pet|c elgment, then thg equations of mqnon for thg dyngm— 4.6261 X2 + 1.7204 XoPxo - - - -+ 0.0096 62.
ical variables may be integrated numerically for given ini-
tial conditions, to find the values of the variables at the exi Therefore, once the dynamical map has been obtained,

of the magnetic element. However, this method requirggacking particles in the EMMA cell simply involves calcu-
tracking through the beamline each time one wants a chagting the ouput values for a given set of input values. The
acterization of the beam behaviour. When tracking manyower series is truncated at a certain order (in the exam-

particles through many steps, the process can be highly dgte in Table 1, at 2nd order). Even though the integration
manding in terms of computing time and memory.

In EMMA [1], a highly compact doublet cell is achieved

using short quadrupole magnets. A large aperture requirgaple 1: Selected terms from the 2nd order dynamical map for
ment then leads to potentially significant fringe fields. Ace x variable, for one EMMA cell at 15 MeV reference energy.

curate simulations of the beam dynamics in EMMA require Coefficient Order  Exponents
a dense description of the magnetic field, and numerous in- R11 1.0344 1 10 00 00O
tegration steps. Solving Maxwell’'s equations in an EMMA R12 0.2683 1 01 00 00
cell (by a Finite Element code, OPERA [2]) we have gen- R16 -0.0103 1 00 00 01
erated a 3D magnetic field map that can be used for numer- T111 4.6261 2 20 00 00
ical tracking in EMMA with PyZgoubi [3, 4, 5]. In most T112 1.7204 2 11 00 00
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routine is symplectic, the truncation results in a symjdect
error. A symplectic transformation satisfi¢ - - .J = S,
where S is a block diagonal matrix constructed from the
‘unit’ 2 x2 antisymmetric matrix, and is the Jacobian of .
the transformation. A symplectic error in a map may bt * o )
significant if the map is applied iteratively many times, o1 ° by
if small non-symplectic physical effects are being investi
gated. If the map is computed using a symplectic integrator
(as is the case for the results presented here), then the Syffyyre 1: Horizontal (left) and vertical (right) tune vessu
plectic error depends on the order of truncation, rathet thainetic energy using multiple dynamical maps.
integration step size.

The symplectic integrator that we use requires the parax-
ial approximation. This requires some care, since in an
FFAG, beam excursions can be large (of the order of a few
cm). However, when one computes a dynamical map, it is
necessary to make a choice of reference trajectory. Since
energy and transverse position are correlated, a sensible
choice is to look for closed orbits for various reference en-
ergies over the full energy range (in EMMA, from 10 MeV
to 20 MeV), and use these closed orbits as reference tra- o .
jectories. For small energy deviations, particle trajget Figure 2: Path length versus kinetic energy from dynamical
should then remain close to the reference trajectory, and tH1aP (blue) and PyZgoubi (red).
paraxial approximation should be valid.

In practice, we do not use exactly the closed orbit agqm time to flight to path length and has to be studied in
the reference trajectory at a given reference energy. F{yre detail. A hard-edge model of the magnets in Zgoubi
simplicity in the iritegration, we use instead a stiaighelin is also shown (in green) on the plot, and indicates the im-
starting (and ending) at the middle of a long drift, where,, ¢ of the fringe field on the vertical tune: a discrepancy
the field is close to zero; the position of the straight lineys shout 10% is found at 10 MeV.
is chosen to minimize the excursion of the closed orbit Betatron motion may be studied in more detail by apply-
with respect to t_h's reference trajectoiy. Since therg aiﬁg the dynamical maps to particles with some initial trans-
42 cells in total in EMMA, concatenating the dynamical g e offset with respect to the reference trajectory. Fig.
map around the straight reference trajectory with a ratatioz g5 the horizontal phase space for reference energies
through.2r/_42 (apout a vertical axis) produces a map fo'from 10MeV to 20 MeV, constructed by applying the ap-
one periodic section of the EMMA lattice. propriate dynamical map iteratively to particles with 1 mm

initial transverse offset (with respect to the referenee tr
MAPSWITH VARIOUS REFERENCE jectory). We notice that there is some non-physical growth
ENERGIES in the amplitude over time for 10 MeV and 11 MeV: this is

consequence of the truncation of the dynamical map to

' . _a
We first compare .the resulis O.f the dyriamical map WIﬂ%nd order. The effect disappears if terms up to 4th order
the results of numerical tracking in Zgoubi. Eleven dynam%‘re retained

ical maps were calculated around the closed orbits for re
erence energies from 10 MeV to 20 MeV, in steps of 1 MeV.
The tunes (phase advances per cell) can be obtained from MAPSWITH ENERGY DEVIATION
the eigenvalues of the linear part of a given map: The number of dynamical maps required to model the
)\ = et2miv dynamics over the full energy range in EMMA will depend
’ on the range of validity of each map with respect to vari-
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wherev is the tune.
The zeroth-order term in the map for the fifth variable
(longitudinal coordinate/Z) represents the difference in 7] ‘ N
path length of the closed orbit with respect to the referenc | '
trajectory.
The comparisons of these features with numerical tracl _, iy
ing through the magnetic field map with PyZgoubi are plot
ted in Figs. 1 and 2. The two codes show good agreeme . ‘ .
for the horizontal tune and path length, although a sligt.. =~ = e ) T eyl
discrepancy occurs in the path length for high energy. This
might be due to a truncation in the relativistic conversiorf-igure 3: Betatron motion with multiple dynamical maps.
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Figure 6: Closed orbit path length computed with a set of
dynamical maps at different reference energies (blue dots)
and with a single dynamical map with different energy de-
Figure 4: Horizontal betatron tunes computed with a set ofiations (red crosses). Left: dynamical map up to 2nd or-
dynamical maps at different reference energies (blue dotsler. Right. dynamical map up to 4th order.

and with a single dynamical map with different energy de-

viations (red crosses). SUMMARY AND NEXT STEPS

. The large range of transverse positions in an FFAG can
- . . be modelled using multiple dynamical maps with differ-
I N ent reference trajectories. The phase advance per cell and
' R N the path length computed using a dynamical map show
WS good agreement with the results obtained using a numer-
< ical tracking code, Zgoubi. Accurate description of the be-
S tatron motion requires the dynamical maps to be computed
to at least the 4th order, at small energy deviation. If the

Figure 5: Betatron motion at different energies, simulate@nergy deviation is large (for example, to cover the full en-

with dynamical map up 4th order (left), and 9th ordef"9Y range in EMMA from 10 MeV to 20 MeV in a single
. y i , u y -
(right). dynamical map), then a map up to 9th order may be re

quired.

Acceleration may be included in the dynamics by mak-
ations in the energy deviatioh Fig. 4 shows the tune ing an appropriate adjustment to the energy deviation at the
as a function of energy obtained in two different waysend of each cell (representing the effect of an RF cavity in
first, from different dynamical maps computed for differ-the cell). The results presented here suggest that it may be
ent reference energies (blue dots); and second, from a sjpessible to achieve a reasonable description of the dynam-
gle dynamical map at a single reference energy (15 MeVigs using a fixed reference energy at the mid point of the
but with different values for the energy deviation(red energy range. However, if a very accurate description is
crosses). The good agreement between the two methogsjuired, then it may be necessary to change to a different
suggests that it may be possible to use a single map to deference energy at one or more points during the acceler-
scribe the transverse dynamics with good accuracy, evetion.
for large energy deviations.
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