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Abstract

The Non Scaling Fixed Field Alternating Gradient (NS-
FFAG) EMMA accelerator has a purely linear lattice, and
the crossing of resonances during acceleration is therefore a
key characteristic of the beam dynamics. An accurate mea-
surement of the tune is essential for a full understanding
of the machine behaviour. However, commonly used mea-
surement techniques require the beam to perform a large
number of turns in the machine. Simulations have shown
us that rapid decoherence of the beam requires a technique
capable of providing a tune measurement from just one or
two turns of the ring. Model independent analysis (MIA)
has been investigated as a possible approach. The singular
value decomposition of a matrix composed of BPM read-
ings from the trajectories of different bunches provides in-
formation on the machine optics. Simulations indicate that
it should be possible to derive an accurate value of the tune
using MIA, even in the presence of BPM noise and beam
decoherence.

INTRODUCTION

The Electron Model for Many Application (EMMA [1])
is the first Non Scaling Fixed Field Alternating Gradient
ever built. The lattice is composed entirely of quadrupole
magnets that are used simultaneously to steer and focus
the beam: since there is no chromatic correction, the tune
variation during the acceleration cycle (from 10 MeV to
20 MeV) is large. For the same reason, the energy spread
on a bunch in the machine leads to rapid decoherence
(within a couple of turns) of any coherent oscillations, mak-
ing measurements of the betatron tunes very challenging.

In this paper, we describe an approach to tune measure-
ments based on Model Independent Analysis (MIA [2]).
The technique relies on identifying correlations between
measurements made using different BPMs, from a number
of different bunch trajectories. We first explain the princi-
ple, then describe its application to EMMA. We simulate
the measurement technique in the ideal machine (without
magnet or BPM errors), to assess the magnitude of system-
atic errors arising from certain limitations in the analysis
technique. Finally, we consider the impact of BPM noise
and beam decoherence on the accuracy of the tune mea-
surement.
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THEORY

Our goal is to determine the tune in EMMA from BPM
readings over one or (at most) two turns of a bunch per-
forming coherent betatron oscillations. A set of BPM read-
ings can be collected each time a bunch is injected into the
machine. By injecting several bunches, we can construct an
array of BPM readings, with each column corresponding to
a separate BPM, and each row corresponding to a separate
trajectory.

The trajectory of a bunch is determined by the initial val-
ues of the dynamical variables describing the position and
momentum of the bunch centroid. If we consider (for sim-
plicity) motion in just one degree of freedom, then the tra-
jectory is determined by two parameters. It must then be
possible to construct any row of the matrix of BPM read-
ings by a linear combination of just two vectors; appropri-
ate orthonormal vectors may be determined by performing
singular value decomposition (SVD) of the matrix of BPM
readings:

A = U · S · V T , (1)

whereA is the matrix of BPM readings,S is a diagonal
matrix, andU andV are orthonormal matrices. Any row of
the matrixA can be constructed from a linear combination
of the rows ofV T . In the case that only two vectors are
needed to construct any row ofA, S has only two non-
zero components, and only the first two rows ofV T are
significant.

A betatron oscillation with invariant amplitudeJ0 and
initial phaseφ0 can be written as:

xn =
√

2βnJ0 cos(φn + φ0), (2)

wherexn is the coordinate of the bunch centroid at thenth
BPM,φn is the betatron phase advance from the start of the
beamline to thenth BPM, andβn is the beta function at the
nth BPM. This can be written as:

xn = cos(φ0 − ψ)
√

2βnJ0 cos(φn + ψ)

− sin(φ0 − ψ)
√

2βnJ0 sin(φn + ψ). (3)

If we define two vectors~c and~s with components:

cn = αc

√

βn cos(φn + ψ), (4)

sn = αs

√

βn sin(φn + ψ), (5)

then it is clear that any trajectory (set of BPM readings) can
be written as a linear sum ofcn andsn (with coefficients



determined by the betatron amplitudeJ0, and initial phase
φ0). Furthermore, if~c and~s are orthonormal:

∑

n

βn cos(φn + ψ) sin(φn + ψ) = 0, (6)

α2

c

∑

n

βn cos2(φn + ψ) = 1, (7)

α2

s

∑

n

βn sin2(φn + ψ) = 1, (8)

then we can obtain the componentscn andsn from the first
two rows ofV T .

If the matrixA is constructed from a number of mea-
sured bunch trajectories, SVD ofA gives the values ofcn
andsn. If there areN BPMs, then Eqs. (4) – (8) express
2N + 3 constraints on the values of the2N + 3 variables
βn, φn, ψ, αc andαs. Unfortunately, not all the constraints
are independent, and there is therefore some degeneracy in
the solution. However, if we start with values for the beta
functions and phase advances taken from a model that is
reasonably close to the machine, then we can find the min-
imal changes required to these values to fit the measured
data. This should provide an improved model of the ma-
chine. Note that the analysis in this case is no longer truly
“model independent”.

In practice, a range of different trajectories may be pro-
duced by adjusting the steering in the injection line, or (in
the horizontal plane) by adjusting the strengths of the injec-
tion kickers. In either case, variations may be systematic
or random. There will, in any case, likely be some injec-
tion jitter resulting from variations in beam energy, shot-to-
shot kicker strength, etc. If this jitter is sufficiently large,
then it may be possible to make tune measurements from
SVD without any deliberate variation in steering magnet or
kicker strengths. On the other hand, a systematic variation
in the injection trajectory may allow study of such effects
as tune shifts with amplitude.

Generally, BPM readings will be subject to errors includ-
ing systematic offset and gain errors, and random noise
errors. Systematic offsets may be reduced by subtracting
the mean from a set of readings at each BPM. Gain errors
will mainly affect measurement of the beta functions. In
the case that the BPM measurements are completely free
of random noise, then only two vectors are needed to con-
struct any row ofA, and this will be reflected in the fact
that the diagonal matrixS will contain only two non-zero
values. Random variations in the BPM readings will re-
sult in additional non-zero values appearing inS; however,
if the noise is not too large, then the betatron signals will
dominate the components ofA, and the largest values inS
will correspond to the vectorscn andsn, as given above in
Eqs. (4) and (5), in the first two rows ofV T . One of the
advantages of the MIA technique is that it allows one to
identify (and, if necessary, to exclude) “noisy” BPMs.

SIMULATIONS

In the first stage of EMMA commissioning, beam will
be transported through only the first four sectors (2 injec-
tion cells plus 21 identical periodic cells) of the machine.
Each cell is composed of a defocusing quadrupole (D) and
a focusing quadrupole (F), each mounted on a mover that
allows control of the radial position. Varying the positions
and strengths of the magnets allows different lattice con-
figurations to be studied. For the purpose of this paper, we
limit our study to the baseline lattice [3]. We simulate the
beam dynamics in EMMA using dynamical maps [4].

Each EMMA cell contains two BPMs. One is always sit-
uated between the D and F magnets (‘DF’ type); the other is
alternatively positioned just after the F magnet (‘AF’ type)
or just before the D magnet (‘BD’ type). For the present,
we focus on the phase advance between two location sepa-
rated by a cell length; therefore, only the ‘DF’ type BPMs
are considered.
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Figure 1: Simulated tune measurement using MIA in lattice
without magnet or BPM errors. Left: Tune per cell, with
50 bunches per event. Right: Tune in cell 17, determined
from events with different numbers of bunches. The red
line shows the actual tune.

Ideal Model

In an ideal case, we consider all EMMA cells to be iden-
tical, and all BPM signals free of noise. We use a reference
energy of 12 MeV; the calculated horizontal tune per cell
(phase advance divided by 2π) at this energy in the base-
line lattice isνx=0.2810. In Fig. 1 (left hand plot), we show
the results of a simulation of the tune measurements. The
points show an average over the number of events,NE (one
event consists in tracking a specified number of bunches
with different trajectories), and the error bars show the stan-
dard deviation in the tune over all events, divided by

√
NE

(with NE = 30, for the plots shown here). We observe that
in the ideal case (no magnet or BPM errors) the tune mea-
surement has a random error (error bar) of order10−4, and
a systematic error (difference between measured and nom-
inal tune) of order10−3. Increasing the number of bunches
per event decreases the random error (see Fig. 1, right hand
plot), but a systematic error remains. This is likely to be a
consequence of the degeneracy in solving the equations to
determine the phase advances from the SVD modes. How-
ever, the precision of the measurement we obtain in this
ideal case is sufficient for experimental studies. Note that



over the energy range 10 MeV to 20 MeV, the tune varies
from 0.36 to 0.16.

Effects of BPM Noise

In principle, the SVD analysis separates BPM signals
corresponding to real beam motion from fluctuations in in-
dividual BPM readings arising from random noise. This
is possible because the readings from different BPMs are
correlated in the case that the signals are generated by be-
tatron motion; but the noise signals are expected to be un-
correlated. However, with a finite number of trajectories,
it is impossible to separate completely the noise from the
signal corresponding to the betatron trajectories, and it is
therefore likely that limited BPM resolution will affect the
accuracy of the tune measurements.

The BPM resolution is expected to be in the range 70µm
to 20µm, depending on the bunch charge (which will be in
the range 10 pC to 30 pC, with the best resolution achieved
with the highest bunch charge). In the simulations, noise
was added to the BPM measurements simply by adding
random numbers generated so as to have a normal distri-
bution with width equal to the specified resolution.

Fig. 2 shows the effect of 50µm BPM noise on tune mea-
surements using MIA. The left hand plot shows the results
of simulated tune measurements in all cells; the right hand
plot shows how the tune measurement in cell 17 depends on
the number of bunches (trajectories) used in a single event.

0 5 10 15 20
cell number

0.274

0.276

0.278

0.280

0.282

0.284

0.286

0.288

n
u
x
 p

e
r 

ce
ll

0 10 20 30 40 50
number of bunches

0.281

0.282

0.283

0.284

0.285

n
u
x
 p

e
r 

ce
ll

Figure 2: Effect of 50µm BPM noise on tune measure-
ments. Left: All cells (50 bunches per event). Right: Cell
17.

As expected, an increasing level of BPM noise leads to
an increase in the spread of tune measurements obtained
from multiple events – see Fig. 3.

20 40 60 80 100
Added noise on BPM signal [microns]

0.2810

0.2815

0.2820

0.2825

0.2830

n
u
x
 p

e
r 

ce
ll

Figure 3: Effect of increasing BPM noise on simulated
MIA tune measurement in cell 17 (50 bunches per event).

Effects of Energy Spread

The large chromaticity in the EMMA lattice means that
the energy spread of particles in a bunch will lead to rapid
decoherence of coherent betatron oscillations of the bunch.
Since the BPMs record the centroid position of a bunch,
decoherence will affect the BPM readings, and hence will
impact the tune measurements.

The tune measurement in the first cells is little affected
by the energy spread, since the beam has little chance to
decohere. However, after less than one turn, the effects
become noticeable. Fig. 4 shows the results of a simulated
tune measurement in cell 23, with 0.5% rms energy spread
on the injected bunch. We see there is a significant increase
in the spread of the tune measurements compared with the
case without energy spread (Figs. 1 and 2). Combined with
BPM noise, the uncertainty in the tune measurement is of
order10−1.
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Figure 4: Effect of decoherence on MIA tune measurement
in cell 23. Left: No BPM errors. Right: BPM resolution
50µm.

SUMMARY

Conventional techniques for tune measurements cannot
be applied in EMMA, because of the rapid decoherence
of coherent betatron oscillations. A technique based on
MIA holds promise for making reasonably accurate mea-
surements of the phase advance between BPMs, although
even in an ideal lattice (without magnet or BPM errors) sys-
tematic and random errors arise from intrinsic uncertainties
in the analysis method. However, errors associated with
limitations on the BPM resolution, and beam decoherence
due to chromaticity, are likely to dominate the tune mea-
surements.
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