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Abstract the amplitude of the coherent oscillations, the horizontal

. . coordinate at a given BPM on a tutrcan be written as:
BPMs capable of high resolution turn-by-turn bunch 9

position measurements are becoming increasingly widely

used in electron storage rings. Analysis of the data from 2(t) = /2By Jy cos (2mvat + buo) ,

a set of such BPMs following the excitation of a coherent

betatron oscillation can yield useful information for togi

the optics and improving machine performance. This agvhere(, is the beta function at the BPN,, the betatron
proach to optics measurement has the benefits that the datae, J,. the betatron action resulting from the kick given
collection is very fast, and analysis can be local, so thao the bunch, ané, the initial (turnt = 0) betatron phase
application is as easy for a large ring as for a small on@f the bunch at the BPM. Even if the betatron action is not
Here, we describe a technique for using turn-by-turn BPMnown, it is possible, from measurement of the oscillation
data to determine lattice functions that describe the locamplitude at each BPM, to determine tiekative beta func-
coupling in a storage ring; this may be helpful, for examtions.

plg, fpr achieving low yerucal_ emittance. We discuss the The phase of the betatron oscillation at each BPM also
principles of the technique, give some examples, and co

) . o e _provides information on the optics. This can be useful
sider poss_lble limitations arising, for example, BPM gai ince, with measurements over a reasonable number of
and coupling errors. turns, the phase advance between any two BPMs may
be determined with very good accuracy. Phase advance
INTRODUCTION data are already used very successfully for optics measure-

ments and correction in storage rings [1, 2]. Since high-

Tuning the optics is a key step in optimising the perhandwidth BPMs with good resolution are now becoming

formance of a storage ring, and there are well-establishgggely available, it is interesting to consider differemt-a
techniques for measuring the lattice functions (Twiss pasroaches to analysis of turn-by-turn BPM data, with the

rameters and dispersion) that are generally used to charagm of making maximum use of the information that may
terise the optics. By adjusting magnet strengths to bringe gptained.

the measured values of the lattice functions close to the de-

sign values, it is frequently possible to improve machine US€ Of tum-by-turn BPM measurements for measure-
performance. ment of global coupling parameters has already been

One common procedure for measuring the beta fun((lzi__emonstrated [3]. Here, we discuss an analysis technique

tions at the location of a particular quadrupole is to obsen/iMed at determination of thecal, coupled lattice func-

the variation in betatron tunes with respect to changes fiPnS from turn-by-tum data. Our technique is based on us-
strength of the quadrupole. For example, if the change ihY data from a SeF of three (or more) BPMs t°9,eth6f with
quadrupole strength is known, the horizontal beta functioff T0d€! of the lattice between them, to determine the lat-

(3. atthe location of the quadrupole can be determined fro € functhns at the BPMs. In principle, it is possible to
the equation: it BPM gains and magnet strengths to the data, as well as

1 the lattice functions. However, simulations suggest that t
Av, = Eﬁw Ak1L, BPM data may have a rather poor sensitivity to errors on in-
dividual magnets. This is both a drawback, in that it makes
whereAw, is the change in horizontal tune resulting fromit difficult to determine individual magnet errors from the
achange\k, L in the integrated normalised strength of thedata; and an advantage, in that the magnet strengths should
quadrupole. However, to determine the beta functions generally be known well enough to justify use of a model
a large number of quadrupoles using this technique isig fitting the data.
lengthy process. An alternative technique is to measure,

at a set of beam position monitors (BPMs), the coherer&t} In the;hfollowmg stectlons, we |I|rsft out||r_1e tlhetz_ relev?rt\rt]
betatron oscillations resulting, for example, either fram eory, then present some resufts from simulations of the

“ick” given to a stored bunch, or from resonant eXCita_AcceIerator Test Facility (ATF) damping ring at KEK.

tion of the beam. In the absence of coupling and processﬁI esently, only a small number of BPMs at the ATF have

£ .. .
h as decoh _and hrot diation) that d capability of making turn-by-turn measureme;nts; how-
(such as decoherence, and synchrotron radiation) tha aevser, an upgrade of the BPM system in the ATF is planned

“Work supported by the Science and Technology Faciliiesteitu 10T later this year, and we hope that it will soon be possible
t a.wolski@liverpool.ac.uk to carry out practical tests of this technique at the ATF.




THEORY further constraints from measurements of the amplitude of
an oscillation in mode I, relative to the “x” amplitude at

There are various definitions in use for the lattice funCBPM A: specifically, we measure the “y" amplitude at

tions in.a coupled beamli_nt_a: For the present purpose it e A, and the “x” and “y” amplitudes at BPMB and(C.
convenient to use the definition [4]: Finally, assuming that mode Il is associated predominantly
with vertical motion, we identify the final constraints from
measurements of an oscillation in mode Il, relative to the
where (inn degrees of freedom is a2n x 2n matrix “y” amplitude at BPMA: specifically, we measure the “x”
that normalises (i.e. transforms into a pure rotation) theMPlitude at BPMA, and the “x” and “y” amplitudes at
single-turn transfer matrix at a given point in the lattice, BPMs B andC.
andj are indices taking values from 1 ta 2corresponding  |f we know the transfer matrices between the BPMs, and
to components of the cartesian phase space vedtor), We do not include BPM gains as variables, then there are
I,11... (corresponding to the normal mode of oscillation)8 variables (parameters of the normalising transformation
and the matriceg‘k have Componen@i’; = 1for: :] — at any Of the BPMS) '.:0 fit 14 constraints: the fit is over-
2%k andi = j = 2k — 1, ande; — 0 otherwise. With these con;tramed. In p_r|nC|pIe, we can use the “surplus con-
definitions, the beam distribution at any point in the latic Straints to determine BPM gain errors or magnet focusing
is given by: errors. o .

(wsz;) = Z 3k ey In a linear apprommgtlon, t.he BPM gains may be rep-

" Ea resented as 2 x 2 matrix relating the measured beam co-

ordinates to the actual beam co-ordinates. Each BPM gain
where ¢, are the emittances, invariant under transpotatrix therefore potentially adds four variables to the fit,
around the ring, given by: although if we do not know the absolute amplitudes of the
induced oscillations in the two normal modes, we can ex-
clude from the set of variables two of the components of
the gain matrix of one BPM (i.e. we would fit gains rel-

where3. is a matrix constructed from the second-order moz . % oo components). With three BPMs, there are
ments(z;x;) of the beam distribution.

- . . . therefore ten additional variables; including all of thé@se
The normalising transformatiol 4 at a point4 in the : : . : ;
. X ) . he fit would result in the fit becoming under-constrained.
lattice relates the cartesian variables to the actionean

: . e can include at most four BPM gains.
variables. From now on, we consider two degrees of free- h giff hods th h iod f
dom, so we can write: ere are two different methods that we have tried for

performing the fit. In the first method, we fit eight vari-

kL =N.TF. NT

k=1,1...

eigenvalue$y) = Liey,

z V2., cos ¢, ables that parameterise the normalising transformation at
Dz —+/2J; sin ¢, A, and determine the normalising transformationB and

y =Na- V2, cos ¢, ) C by applying transfer matrices computed from an “ideal”
Dy —/2J, sin &, model. In the second method, we fit 24 variables that pa-

rameterise the normalising matrices at all three BPMs, and
whereJ, andJ, are the invariant actions giving the ampli- apply the transfer matrices computed from the ideal model
tudes of the oscillations in each normal betatron mode, areé “additional” constraints. In practice, we find that the
¢, andg, are the corresponding phase angles. second method is a little more robust, and converges more

The normalising matrixV 4 represents a transformation quickly, than the first method.
between two sets of canonical variables, and must thereforeTo perform the fit, we need a parameterisation of a sym-
be symplectic: a symplectic matrix in two degrees of freeplectic matrix. The matrix exponential representation-pro
dom can be specified by 10 parameters. However, we caitles a convenient parameterisation:
choose the reference phase angles with respect to the carte-
sian coordinates by specifying values 6 12 andN 4 4. N=exp(S-Q),
With a given choice of reference for the phase angles, the
normalising matrix can be specified with 8 parameters. lWheresS is a2n x 2n matrix with block diagonals:
the transfer matrix to some other point in the storage ring
is known (from the strengths and positions of the magnets 0 1
between the two points), then the same 8 parameters also 5y = ( -1 0 ) ’
specify the normalising matrix at this second point.
Measurements of phase and amplitude data using BPMsQ is anysymmetric 2n x 2n matrix, thenN will be sym-

at three different locations (labelledl, B andC) provide plectic, though not necessarily (in the case of two degrees
14 constraints. For each mode (I and Il), we have a phaséfreedom) withN;, = N34 = 0. The conditions orV;»
advance from BPM1 to BPM B, and a phase advance fromand N3, cannot be simply expressed in terms of constraints
BPM B to BPM C. Assuming that mode | is associatedon ; however they can easily be added as additional con-
predominantly with horizontal motion, we would identify straints on the fit.
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Figure 1: Selected lattice functions at the central BPM frongigure 2: As Fig. 1, but with 2% rms BPM gain errors
a set of three providing data for a fit. The fitted values fromapplied.
turn-by-turn data (vertical axis) are plotted versus the se

values resulting from applied normal and skew quadrupole
strength errors. No BPM gain errors applied. simply reflect that these lattice functions are significantl

smaller than the others.
Fig. 2 shows the results of a simulation using the same
SIMULATIONS conditions as for Fig. 1, but with 2% rms BPM gain errors
. . . .applied. While the correlations for the “in-plane” lattice
Data were simulated bY traf:klng P_ar“c"?s 600 tums 1|0 ctions are still good, there is significant deterionati
a model of the ATF damping ring lattice, with initial con- ¢ " = = ob; andBy5. This may again be a conse-
ditions corresponding to each of the “transverse” norm uence of the magnitude of these functions, compared to
modes in turn. In practice, corresponding data would b, e others
collected by rec_o_rding turn-by-turn data at the BPMs, while The accuracy of the fit relies on having a good model of
_resonantly excmr;]g thef b;]aan; at a frequency Eorrerslponﬂie lattice. It may be possible to improve the reliability of
mg: to r(])ne OL other of t E etatron tunes. d.or t eorgghe fit by carrying out the fitting iteratively. For example,
sults s .o‘?.m _er(tar,] strendgt terrors corrlgsgcin Irlllgthto -S¢fice the lattice functions have been fitted at differentJoca
rmsl varlz lon 'In eRgradlen vtvere a;pp e h 0a 0 OeAnorfions around the ring, the quadrupole strengths leading to
mal quadrupoles. Random S rengths W't_ rms V.UM these lattice functions can be determined. Then, fitting can
integrated normalised gradient were applied to th_e SKGWe repeated using the “improved” model. There remains
quadrupole;, to generate some coupling. The couplmg.ge “ope for further improving the quality of the fit that can be
eraFed n th's. way would cqrrespond, roughly, to vertica btained: for example, data from a larger number of BPMs
orbit offse_t with rms 1 mm |n.the sextupoles. Thg MO ould be used to provide additional constraints on the fit.
were applied only for generating the orbit data: fitting (us-
ing the second of the two methods described above) was
performed using a model with the errors removed. REFERENCES
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