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Abstract

Analytic descriptions of arbitrary magnetic fields can be
calculated from the generalised gradients [1] of the on-axis
field. Using magnetic field data, measured or computed on
the surface of a cylinder, the generalised gradients can be
calculated by solving Laplace’s equation to find the three-
dimensional multipole expansion of the field within the
cylinder. After a suitable transformation, this description
can be combined with a symplectic integrator allowing the
transfer map to be calculated. A new tracking code is under
development in C++, which makes use of a differential al-
gebra class to calculate the transfer map. The code has been
heavily optimised to give a fast, accurate calculation of the
transfer map for an arbitrary field. The multipole nature of
the field description gives additional insights into fringe-
field and pseudo-multipole effects and allows a deeper un-
derstanding of the beam dynamics.

INTRODUCTION

Venturini and Dragt [1] give a prescription to describe a
magnetic field or potential in terms of its cylindrical har-
monics and Taylor expansions. Such a description gives
an analytical description of the field in the transverse plane
with a longitudinal dependence on the generalised gradi-
ents of the field – that is, the numerically calculated on-
axis components of the field gradients. The resultant field
map satisfies Maxwell’s equations and automatically in-
cludes fringe field and non-linear terms. A code has been
written in C++ that utilises a fast Fourier method to cal-
culate the generalised gradients for an arbitrary magnetic
field along a straight beam line. Being able to describe the
fields analytically allows rapid calculation of transfer maps
using a suitable analytic integration scheme. To this end,
a specialised differential algebra template class is used to
describe the transverse field components, and this offers
significant time savings over similar, more general, codes.
A second order symplectic integration scheme [2] is im-
plemented to allow numerical or analytical computation of
the evolution of the canonical phase space vector from an
initial state to the final state. The modular design of the
code gives a straightforward method of adding further func-
tionality to the code, or inserting alternative components:
e.g. user-defined analytical descriptions of the field, alter-
native integration schemes etc. As an example, an addi-
tional module has been added to describe the synchrotron
radiation emitted by a particle as it traverses the field [3].
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CODE DESCRIPTION

Field Description

For a periodic structure, a general scalar potential that
satisfies Laplace’s equation, (a cylindrical harmonic or
multipole expansion) can be written:

Ψ =
∞
∑

m=−∞

exp(ımφ)

∫ ∞

−∞

dk Gm(k) exp(ıkz)Im(kρ),

=

∞
∑

m=0

exp(ımφ)ψm(ρ, z),

=
∞
∑

m=0

cos(mφ)ψm,c(ρ, z) + ı sin(mφ)ψm,s(ρ, z).

(1)

Gm(k) are arbitrary coefficients, andIm are the modified
Bessel functions, which can be expressed as a Taylor ex-
pansion:

Im(x) =

∞
∑

l=0

1

l!(m+ l)!
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2

)2l+m

. (2)

From Eq. (1), the vector potentials can be derived:

Aφ = 0, (3)
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Eqs. (1) and (2) can be used to expressψm(ρ, z) as:

ψm(ρ, z) =
∞
∑

l=0

1

22ll!(l + |m|)!
ρ(2l+|m|)

(

1

2

)|m|

∫ ∞

−∞

dk k2l+|m|Gm(k) exp(ıkz), (4)

or

ψm(ρ, z) =

∞
∑

l=0

(−1)l |m|!

22ll!(l + |m|)!
ρ(2l+m)C [2l]

m (z),

(5)
where theC [n]

m (z) are the on-axis generalised gradients.
Suppose the radial component of the magnetic field,Bρ,

is known on the surface of a cylinder of radiusR, then the
field can be fitted in terms of a Fourier series:

Bρ(ρ = R,φ, z) =
∞
∑

m=0

âm(R, z) cos(mφ) + b̂m(R, z) sin(mφ) (6)



The coefficientŝbm (âm) correspond to normal (skew)
components of the field, and the integer,m, gives the mul-
tipole order, i.e.m = 0 corresponds to a solenoid compo-
nent,m = 1 represents the dipole component,m = 2 a
quadrupole, etc. To calculate the generalised gradients, the
Fourier series coefficients are scaled by the derivative of
the Bessel function, and a Fourier transform is performed:

C [l]
m,s(z) =

il

2mm!

∫ ∞

−∞

dk exp(ikz)
kl+m−1

I ′m(kR)
b̂m, (7)

and

C [l]
m,c(z) =

il

2mm!

∫ ∞

−∞

dk exp(ikz)
kl+m−1

I ′m(kR)
âm. (8)

C
[l]
m,α(z) is thel th derivative with respect toz of the gener-

alised gradientsC [0]
m,α(z). Eqs. (3), (5), (7) and (8) can then

be used to calculate the vector potential at any point within
the volume of the cylinder.

The magnetic field can be derived from the vector poten-
tials, and transformed into Cartesian coordinates in an arbi-
trary gauge (see [4] for details). The field is therefore fully
described in terms of its multipole modes and the gener-
alised gradients. Furthermore, the algorithm has a smooth-
ing quality – numerical inaccuracies in the initial field are
smeared out. The modified Bessel functions,Im(kz), in
Eqs. (7) and (8) mean the errors shrink exponentially as the
radial distance to the axis decreases.

Differential Algebra Template Class

A “stripped-down” differential algebra template class
has been written which allows polynomial expressions to
be defined with an arbitrary number of variables to arbitrary
order. The standard mathematical operators have been de-
fined as well as methods for differentiation, integration, ex-
ponentiation and the trigonometric functions. Expressions,
differing in the degree and number of variables (explicit
instances), can be used in the same code and conversion
between explicit instances is allowed. The field descrip-
tion is initially calculated in two variables (x, y) to order
eight. Transforming to a suitable gauge (i.e.Ax = 0) re-
sults in a field map accurate to order six and the integration
of the phase space vector therefore requires an expression
in six variables to order six. The ability to mix, and con-
vert between, classes of expressions allows a fast, efficient
calculation of the final dynamical map.

Symplectic Integrator

A second order symplectic integration scheme [2]
has been implemented which calculates the Lie map,
M, that transforms the canonical phase space vector
(x, px, y, py, s, δ) from an initial to a final state for an inte-

gration step∆σ:
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(9)

whereax,y,z(x, y, z) = qAx,y,z(x, y, z), and

Ay = exp

(

: −

∫

ay(x, y, z)dy :

)

.

This integrator was developed to allow accurate track-
ing throughs-dependent magnetic fields (wheres is the
independent variable, the distance along the reference tra-
jectory). Many magnetic elements are modelled using an
impulse boundary approximation, where the magnetic field
is assumed to be constant (s-independent) inside the mag-
net and zero elsewhere, which allows the charged particle
Hamiltonian to be separated into drift and kick regions.
However in many magnetic systems (e.g. wigglers and un-
dulators) thes-dependence of the magnetic field cannot be
accurately modelled in this way – the fringe fields play an
important role in the charged particle dynamics. The an-
alytical description of the field, described above, explic-
itly includes fringe field contributions and this symplectic
integrator is well suited to describing the dynamics of a
charged particle in such a field.

MODELLING THE CESR-C WIGGLER

To demonstrate the techniques mentioned above, the
code was used to model the CESR-c wiggler, using sim-
ulated field data on a rectangular grid [5]. A 3D spline
interpolation code was used to calculate the radial mag-
netic field (Bρ) on the surface of a cylinder with a radius
of 2.6 cm with 49 evenly spaced points in the azimuthal
direction and 8192 points in the longitudinal (z) direction.
A fast Fourier transform of this field was performed to find
the coefficientŝam andb̂m, which were used in Eqs. (7) and
(8) to calculate the generalised gradients. Fig. 1 shows the
calculated normal and skew components of the generalised
gradientC0

1 (the dipole component), which corresponds to
the on-axis field in they andx directions, respectively. Be-
cause the field is calculated to some finite order (sixth, in
this case) the field expansion is truncated, and the higher
order components are not included. However, the number
of terms can easily be increased to give greater accuracy in
the final result.

Fig. 2 (left) shows the initial interpolated field map on
the surface of a cylinder. Fig. 2 (right) shows the residual
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Figure 1: TheC0
1 normal (red) and skew (blue) dipole com-

ponents of the generalised gradient for the CESR-c wiggler.
These components are identified with the on-axis fieldsBy

andBx.

difference between the interpolated field and the calculated
field. The maximum difference is2 × 10−4 T; this differ-
ence will shrink exponentially as the radial distance to the
axis decreases. Outside the cylinder the uncertainties will
grow exponentially, and therefore the error in the calculated
field will grow rapidly.

Finally, the analytic field description was used with
Eq. (9) to calculate the transfer map, and track the evolution
of the dynamical variables. The energy of the electron was
set to 5 GeV and 10,000 integration steps were used. At
each integration step, the field components and the Lie map
M were calculated, resulting in a transfer map for the en-
tire magnet. The field components, calculated at each step,
were written to a file, so the particle track could be quickly
calculated numerically given any initial state. Fig. 3 shows
the evolution of the canonical coordinates (x, px) over the
length of the magnet for an initial state (0, 0).
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Figure 2: Left: TheBρ component of the magnetic field
on the surface of a cylinder for the CESR-c wiggler. This
field is used to calculate the generalised gradients at any
point within the cylinder. Right: The residual field of the
input field (left) and that calculated using the generalised
gradients on the surface of the cylinder.

Figure 3: The evolution of the canonical coordinates (x, px)
of a 5 GeV electron as it traverses the CESR-c wiggler. The
trajectory was integrated over 10,000 points.

CONCLUSION

A new C++ code to describe arbitrary magnetic fields
and calculate the evolution of the dynamical variables of
a charged particle within such a field has been developed.
The code is designed to provide a fast and accurate method
of describing charged particle dynamics. In the given ex-
ample, for a 4.8 m wiggler magnet, the field was interpo-
lated at 49×8192=401,408 points on the surface of a cylin-
der. This field was used to calculate numerically the gen-
eralised gradients for the multipole components up to the
12th pole: this provides an analytical description of the
transverse field. Finally, the field description was used
to integrate analytically and numerically the evolution of
a phase space vector (to second order in the Hamiltonian
and sixth order in the field description) over the length of
the magnet using 10,000 integration steps. The whole cal-
culation took under 8 minutes with a 2.66 GHz processor.
The code is modular, so additional functionality can eas-
ily be added. Further examples of the applications of this
code, and an example of a module to calculate synchrotron
radiation, are described in [3].
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