

Electrostatic Low-Energy Antiproton Recycling Ring

Michele Siggel-King

on behalf of the Recycling Ring Design Group (Quasar, Musashi & Ullrich groups)

TCP 2010 Conference 12 April 2010

Motivation

"Electrostatic Low-Energy Antiproton Recycling Ring" – Michele.Siggel-King@quasar-group.org

"Electrostatic Low-Energy Antiproton Recycling Ring" – Michele.Siggel-King@quasar-group.org

"Electrostatic Low-Energy Antiproton Recycling Ring" – Michele.Siggel-King@quasar-group.org

Helium single ionisation cross section

Reaction Microscope Resolution (momentum: energy and angular distribution)

- beam cross sectional area at interaction point: ≤ 3 mm diameter
- beam divergence at interaction point: $\leq \pm 1^{\circ}$ (± 17 mrad)

 \Rightarrow experimental upper limit on the beam emittance of ~26 π ·mm·mrad

Experimental Set-up

most cross-beam experiments:

• single-pass (use beam only once)

Why not incorporate the experiment into the ring?

- Use beam many times (improvement in luminosity)
- USR and this ring

Electrostatic Antiproton Recycling Ring

Fixed-Energy Ring

Ring and Injection Parameters

Maximum available intensity	5x10 ⁵ particles
Energy of injected particles	10 - 30 keV
Antiproton rotation frequency	193 - 335 kHz
Antiproton rotation period	5.2 - 3.0 μs

QUASAR

Electrostatic Acceleration Section

Estimated Experimental Count rates

energy of antiprotons (keV)	20
emittance of beam in ring (π ·mm·mrad)	10
number of antiprotons/fill	~155 000
% of 300 000 beam	52%
average number of P_bar in ring	58 000
target density (cm ⁻³)	5.0 x 10 ¹¹
average target length (cm)	0.079
ionisation cross section (cm ⁻³)	4.8 x 10 ⁻¹⁷
detection efficiency	0.4
number of times bunch revolves around ring	6000
number of fills per hour	7
number ionisation events detected per hour	1828

(conservative value)

Beam Diagnostics

a challenging part of the USR and Recycling Ring project

beam diagnostics expertise in Quasar group

ultra-short bunches \rightarrow DC beams

variable-energy beams low-energy beams

ultra-low currents

12 April 2010 TCP 2010 Conference "Electrostatic Low-Energy Antiproton Recycling Ring" – Michele.Siggel-King@quasar-group.org

17

Gas Curtain **Beam Profile Monitor**

Summary and Outlook

Electrostatic Low-Energy Antiproton Recycling Ring

to bridge the gap between now and until a new low-energy antiproton facility is operational

Summary and Outlook

Electrostatic Low-Energy Antiproton Recycling Ring

to bridge the gap between now and until a new low-energy antiproton facility is operational

 Prototype for USR testing and development

• Enable progress in atomic physics crossed-beam studies partial cross section measurements

Presently determining overall feasibility.

Acknowledgments

Carsten Welsch

Cockcroft Institute, Daresbury & University of Liverpool, UK

Alexander Papash Michael Holzscheiter

Max Planck Institute for Nuclear Physics, Heidelberg, Germany

Musashi / ASACUSA collaboration

Helge Knudsen University of Aarhus, Denmark

> Yasunori Yamazaki Hiroyuki Torii Naofumi Kuroda

> > Joachim Ullrich **Robert Moshammer**

MPI Heidelberg

