Recent Results of Phase-Space Tomography in the EMMA Injection Line

Mark Ibison

Liverpool Group Meeting 8 June 2011

Goals for Tomography during ALICE Operations: Feb-Apr 2011

- 1) Demonstration of Consistency in Results:
 - between tomographic methods
 - with Quad-Scan/Beam-Size Method
- 2) Extension to Vertical Phase-Space:
 - In addition to the Horizontal
 - use specific input data sets
- 3) Variation of Bunch Charge
 - Investigation of the effect of space-charge

Elements of Experimental Plan

- Dispersion Check in Tomography section
- Optimisation of 'matching' quadrupoles
- Adjustment of beam shape on Tomo screens
- Centring beam in scanning quadrupole(s)
- Tomography by '3-Screens' & 'Quad-Scan'
- Normalised Phase-Space measurements
- Space-Charge investigations

EMMA Injection Line: Components

Tomography Data Collection Techniques

Tomography Configuration for Space-Charge Effects

Experimental Shift Summary

Shift Date	рС	3-Screens	QuadScans		Notes & Other Measurements			
			QUAD-08	QUAD-09				
16/02/11	40	V	V	V	Try to match images on EMI-02, 03, 04			
	40	V	(√)	(√)				
27/02/11	40	None taken	V	V	[LINAC Grad vs. Energy change calibration]			
	20		٧	V	Confirm measured dispersion : $D \approx 0$ at EMI-03 (base on D = 0.82m at AR1-1)			
	20			V	Fit Optical filter to EMI-03 camera lens			
	40		٧	V				
	50		٧	V				
9/03/11	40	V	٧	V	Space-Charge – initial measurements			
	50	V	٧	V				
	60	V	٧	٧	Adjust Buncher Gradient for Charge <u>></u> 60pC			
	70	V	٧	V				
29/03/11	45	V	V	V	Normalised Phase-Space (Predict Twiss params from <i>emittance</i> quad-scan data)			
			(√)	(√)				
09/04/11	20	V	٧		E = 22.5MeV (AEMITR experiments - by DJH)			
	20	V	٧					
			QUAD-07	QUAD-10				
19/04/11	40	V						
	20		V	V	Investigate Space Charge: Compared Quad-scans Q-07 on EMI-02, Q-10 on 04			
	40		V	V	[Emittance Quad-scans, equi-current steps)]			
	60		V	V	[Slit scan of EMI-05 on screen EMI-06]			
	70		V	V				
	80		V	V				

Dispersion Measurement

- Dispersion D leads to beam-size dependence on energy spread δE
- Tomography section designed for low D.
- Confirm by measurement:-
 - Observe displacement δx with E change
 - Calibrate δE in a region of known D (ARC-1)

Example Results (Horizontal)

Example Results (Vertical)

Example Results (Space Charge)

08/06/2011

Tomography Progress

Analysis: Summary of Methods

- Median Filtering
 - Reduce noise, smooth 'negative' regions
- Windowing (Zoom) with centring
 Select an optimum 'region of interest'
- Gaussian Fitting in 2-D
 - Removes subtle features in distribution
- 2nd Moments Calculation
 - For Emittance/Twiss Parameters

Analysis Methods

Analysis: Parameter Values

Date	Bunch Charge		PHASE_SPACE	Screen	Emittance (geom) Beta	Al	pha	Gamma
16/02/201	1 .	40	Н	EMI-3	1.7027	1.2939	-0.28942	0.83757
		40	V	EMI-3	1.5499	1.1286	2.3018	5.5807
27/02/201	1	20	V	EMI-3	2.0857	1.0346	2.5291	7.1492
		20	Н	EMI-3	0.5269	0.35829	-0.68273	4.092
		40	V	EMI-3	0.55112	0.65534	0.40001	1.7701
		40	Н	EMI-3	0.78944	0.65464	-0.87695	2.7023
		50	V	EMI-3	0.72475	0.51231	0.15151	1.9967
		50	Н	EMI-3	0.83436	0.64918	-0.95143	2.9348
09/03/201:	1 .	40	Н	EMI-3	1.6929	0.39992	-0.52026	3.1773
		40	V	EMI-3	3.2929	0.5178	0.83508	3.278
		50	Н	EMI-3	1.6809	0.43654	-0.57922	3.0593
		50	V	EMI-3	2.2135	0.33249	0.2249	3.1597
		60	Н	EMI-3	1.3241	0.49094	-0.71934	3.0909
		60	V	EMI-3	2.6627	0.51366	-0.27594	2.095
		70	Н	EMI-3	1.3831	0.44565	-0.63746	3.1557
		70	V	EMI-3	2.1067	0.46268	-0.79524	3.5282
29/03/201	1 .	45	V	EMI-3	1.4225	0.52822	0.18733	1.9596
		45	Н	EMI-3	0.50165	2.3441	-1.2412	1.0838
09/04/201	1	20	Н	EMI-3	1.033	0.48591	-0.84428	3.5249
		20	Н	EMI-3	1.0799	0.31994	-0.43295	3.7114
19/04/2011	1	20	Н	EMI-2	0.60151	0.77023	-1.6075	4.6532
		20	Н	EMI-4	1.8326	0.34796	-0.76811	4.5694
		40	Н	EMI-2	0.79656	0.89327	-1.1843	2.6896
		40	Н	EMI-4	0.97724	1.0756	-2.0713	4.9185
		60	Н	EMI-2	1.0525	0.98737	-1.1451	2.3409
		60	Н	EMI-4	1.3729	1.2494	-2.2773	4.9514
		70	Н	EMI-2	1.1252	0.99586	-1.1269	2.2794
		70	Н	EMI-4	1.2717	1.163	-2.0311	4.4069
	:	80	Н	EMI-2	1.3007	0.99294	-1.0867	2.1965
	:	80	Н	EMI-4	1.2278	1.138	-2.1267	4.853

Analysis: Trends Space-Charge Effects

Some Outstanding Issues

- Reconstruction Noise
 - Use of smoothing/filtering/thresholding methods
- Uniformity of Projection Angular Intervals
 - Use of 'weighting' factors
- Screen Image Intensity Variation
 - Effectiveness of normalisation

- Reconciling 3-Screen & Quad-Scan Reconstructions
- Camera Noise & 'Background'

Further Work Planned

Detailed Data Analysis:

- 'Space-Charge' data (collected April 2011)

Reconstruction Methods:

- Explore the limitations of the MENT algorithm

Simulation:

Use GPT to predict phase-space distributions in the presence of space-charge

Experimental (possible):

- Tomography in the EMMA Extraction Line

Acknowledgements

- David Holder
- Kai Hock
- Andy Wolski
- EMMA Team