

Modification of the EMMA Injection Line to act as a Full-Energy Electron Beam Diagnostic for ALICE

David Holder

The Cockcroft Institute and the University of Liverpool Department of Physics. 25th June 2009

Accelerator Science and Technology Centre

Outline of Project

- Step 1: Assessment as to whether this modification is technically and financially viable;
- Step 2: Specification of the changes required;
- Step 3: Calculation of the magnet settings required for the successful propagation of the electron beam down the modified line in the presence of space charge.

ALICE & EMMA Layout

ALICE Status

- Gun voltage 230 kV (c.f. 350 kV nominal limited by Stanford ceramic);
- Injector energy 4.8 MeV (correct ratio to full energy must be maintained);
- Full energy 20.8 MeV (limited by SCRF cavity performance);
- Energy recovery demonstrated;
- Coherent terahertz radiation obtained;
- Cryosystem problems currently.

ALICE & EMMA Parameters

	ALICE	EMMA	
Nominal gun energy	350		keV
Actual gun energy	230		keV
Nominal injector energy	8.35		MeV
Actual injector energy	4.8		MeV
Nominal circulating beam energy	35		MeV
Actual circulating beam energy	20.8		MeV
Injection energy		10 to 20	MeV
Nominal bunch charge	80		рС
Bunch charge		1 to 32	рС

Layout of EMMA Injection Line

Nominal 20 MeV Magnet Parameters Rescaled for 35 MeV

Magnet type		K1 (m ⁻²)	Gradient (T/m)	Field (T)	Voltage (∨)	Current (A)	l density (A/mm²)		
				· · ·	20 MeV				
F	dipole		-	0.173	16.8	6.0	0.8		
G	dipole		-	0.190	14.0	5.3	0.7		
G	quadrupole	20	1.4	-	1.0	66			
н	quadrupole	124	8.5	-	8.5	5.6	1.4		
			35 MeV						
F	dipole		-	0.303	29.4	10.5	1.4		
G	dipole		-	0.333	24.4	9.3	1.2		
G	quadrupole	20	2.4	-	1.7	115			
н	quadrupole	124	14.7	-	14.9	9.9	2.5		
		Exi	isting power supply:		Rat	Max I			
					(V)	(A)	(A)		
F	dipole	Needs up-rating			20	10	6.7		
G	dipole	Needs up-rating			20	10	6.7		
G	quadrupole	Needs up-rating					66		
Н	quadrupole		ОК		20	10	9.9		

MAD Modelling

- Standard ALICE lattice 8.5 tuning from the exit of the booster module to the new extraction dipole;
- Zero dispersion in the extraction dog leg;
- Beta functions between main linac and start of the matching section <20 m;
- Matched to specific Twiss parameters at the first screen of the tomography diagnostic;
- Quadrupole gradients must not exceed the limit set by the new magnet power supplies.

MAD Modelling

MAD Modelling – Tomography Section

- Twiss parameters at the exit of the main linac determined by MAD result;
- No changes in the extraction dog leg (to maintain zero dispersion here);
- Matched to the same Twiss parameters at the first screen of the tomography diagnostic.

	α _x	α _y	β _x (m)	B _y (m)	Normalised emittance	
(1B) ALICE linac exit	-0.863	-0.553	7.644	8.333	3	
(2) Tomography section entrance	-1.235	1.235	0.7439	0.7439	(mm.mrad)	

GPT Modelling

GPT Modelling – Tomography Section

GPT Modelling with Space Charge Compensation

GPT Modelling with Space Charge Compensation

	Space charge	Bunch charge	ST1- QUAD- 01	ST1- QUAD- 02	EMI- QUAD- 04	EMI- QUAD- 05	EMI- QUAD- 06	EMI- QUAD- 07
	method		В	В	В	В	В	В
		(pC)	(T/m)	(T/m)	(T/m)	(T/m)	(T/m)	(T/m)
	MAD	-	-0.3113	0.9673	7.148	-5.318	-3.496	16.04
	GPT 3D	0	-0.7405	1.314	5.132	-1.055	-5.779	7.118
-0.71 -	GPT 3D	1	-0.7425	1.319	5.140	-1.013	-5.781	7.012
0.71	GPT 3D	5	-0.7579	1.328	5.259	-0.980	-5.812	6.972
-0.73 -	GPT 3D	10	-0.7689	1.294	5.501	-0.912	-5.869	6.900
	GPT 3D	20	-0.7830	1.298	5.527	-0.894	-5.857	6.898
-0.75 -	GPT 3D	40	-0.8027	1.325	5.547	-0.875	-5.838	6.904
	GPT 3D	80	-0.8162	1.310	5.695	-0.816	-5.844	6.872

Conclusion

- Feasibility of converting the EMMA injection line into a useful diagnostic for measuring the properties of the full-energy ALICE beam was assessed;
- Hardware changes specified:
 - No changes to any of the existing magnets;
 - Increased the current & voltage limit of magnet power supplies;
 - Add OTR screens in parallel to the existing YAG screens;
- Effect of space charge at 35 MeV/80 pC calculated and corrected for.

The end...