Touschek Lifetime Considerations for NSLS-II

B. Nash Cockcroft Institute Seminar 03/04/2009

Outline

- NSLS-II overview
- Touschek lifetime overview
- Off-momentum dynamics
- Higher order multipole errors
- Dynamic aperture impact from multipole errors
- Touschek lifetime results
- Conclusions

NSLS-II: New 3rd Generation Sychrotron Light Source at BNL

•NSLS-II Key Milestones

 Aug 2005CD-0, Approve Mission Need 	(Complete)	
 Jul 2007 CD-1, Approve Alternative Selection and Cost Range 	(Complete)	
• Jan 2008 CD-2 , App	prove Performance	
Baseline(Complete)		
 Dec 2008CD-3, Approve Start of Construction 	(Complete)	
•Feb 2009Contract Award for Ring Building	(Complete)	
Aug 2009Contract Award for Storage Ring Magnets		
 Mar 2010Contract Award for Booster System 		
•Feb 20111 st Pentant of Ring Building Ready for Accelerator Installation		
 Feb 2012Beneficial Occupancy of Experimental Floor 		
 Oct 2013Start Accelerator Commissioning 		
•Jun 2014Early Project Completion; 1 st Beam to Beamlines soon afterwards		
 Jun 2015CD-4, Approve Start of Operations 		
Office of	BROOKHAVEN	

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

NSLS-II Parameters

•Beam Energy	3 GeV
•Emittance	eps _x < 1nm, eps _y ~10pm
•Circumference	792 m
 Circulating average current 	500 mA
 Bunch current/charge 	0.5mA/1.3 nC
 Total number of buckets 	1320
•Lifetime	>3 hours
 Electron beam stability 	10% beam size
 Top-off injection current stability 	<1%
 ID straights for undulators 	>21
 Straight length 	9.3/6.6 m

BROOKHAVEN

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Lattice and Magnet Types

•Normal Quadrupole (66 mm):

- •Type A: Single coil, short,11 T/m
- •Type B: single coil, wide, 11 T/m
- •Type C: Double Coil, long, 22 T/m
- •Type D: Double Coil, short, 22 T/m
- •Type E: Double Coil, Wide, 22 T/m
- •High precision: 90 mm, 15 T/m

•Normal Sextupole (68 mm):

- •Type A: Symmetric, 400 T/m²
- •Type B: Wide, 400 T/m²

•High precision: 76 mm

High precision magnets at max dispersion

CELL 2 SECTION 6

Low Emittance Lattice Approach

U.S. DEPARTMENT OF ENERGY

•Natural emittance with 0, 1, 2, 3, 5 and 8 DWs added

I nm goal for emit. w/ DW

Touschek Lifetime Overview

- Particles scattering off each other in beam. Main effect is energy gain of one particle and energy loss of the other. This is a single scattering effect, in contrast to IBS-> multiple scattering.
- If particle's energy is outside energy aperture, then particle is lost.
- Thus, adequate energy aperture is important in order to have reasonable Touschek Lifetime.

Bruck formula for Touschek Lifetime

$$\frac{1}{\tau} = \left\langle \frac{r_0^2 c N}{8\pi \gamma^3 \sigma_x \sigma_y \sigma_s \sigma_{x'} \delta_{acc}^2} C(\varepsilon_m) \right\rangle$$

$$\tau = \tau_{1/2}$$

(time for loss of ½ particles assuming
rate stayed the same)

$$\varepsilon_m = \frac{\delta_{acc}^2}{\gamma^2 \sigma_{x'}^2}$$

$$au \propto \delta_{acc}^{3.5}$$

$$C(\varepsilon_m) = \int_0^1 \left(\frac{1}{u} - \frac{1}{2}\ln\frac{1}{u} - 1\right) e^{-\frac{\varepsilon_m}{u}} du$$

Off Momentum Dynamics

- induces betatron oscillation about new orbit
- linear optics depends on energy

Why Different Tolerances for magnets at high dispersion?

•Amplitude of Oscillation for Scattering at different positions

$$x(s_2) = \left(\eta^{(1)}(s_2) + \sqrt{\mathcal{H}_1\beta_x(s_2)}\right) \delta + \eta^{(2)}(s_2)\delta^2$$

•with 2.5% :

Magnetic Field Multipole Expansion

$$(B_{y} + iB_{x})(r,\phi) = B\rho \sum_{n} (b_{n} + ia_{n})r^{n-1}e^{i(n-1)\phi}$$

$$\bullet_{b_{1}} = \text{dipole, } b_{2} = \text{quadrupole, } b_{3} = \text{sextupole}$$

$$\bullet_{a_{n}} = \text{skew components} \\ (B_{n} + iA_{n})(R) = \frac{1}{2\pi} \int_{0}^{2\pi} (B_{y} + iB_{x})(\phi; R)e^{-i(n-1)\phi}d\phi$$

$$\bullet_{Measured by}$$

$$\bullet_{Rotating coil}$$

$$\bullet_{Rotating coil}$$

$$\bullet_{B_{N}}^{n} = \frac{0}{L} B_{n}(s; R)ds \\ B_{N}(s; R)ds \\ \bullet_{0}^{L} B_{N}(s; R)ds$$

$$\bullet_{12}$$

$$\bullet_{BRODELLABORTORY}$$

 $\mathbf{1}\mathbf{2}$

Multipole Errors (cont.)

for y=0,
$$B_y + iB_x = B\rho \sum_n (b_n + ia_n) x^{n-1}$$

•Off momentum particles will start to see higher order multipole errors.

Sources of Systematic and Random Multipole Errors

 For ideal, symmetric 2N-pole magnets, higher order multipoles consistent with symmetry ("allowed multipoles"): N(2m+1), m=0,1,2,...

dipole (N=1): 1,3,5,7, ... quadrupole (N=2): 2, 6, 10, 14, ...

sextupole (N=3): 3, 9, 15, 21, ...

•1st 3 allowed multipoles are sufficient to characterize field

• Random Errors from manufacturing tolerances

Multipole Tolerances for NSLS-II Quadrupoles

Allowed harmonics	Normal [x 10 ⁻⁴] @ 25 mm	High precision[x10 ⁻⁴] @ 25 mm
b6	1	1.0
b10	4.5	0.5
b14	4.0	0.1
non-allowed harmonics		
B1	1.0	1.0
B3	3.0	3.0
B4	1.0	1.0
B5	0.1	0.1
B7-b9	0.1	0.1
B11-b13,b15-b20	0.1	0.1
Skew terms		
A1,a3	1	1
A4 and above	0.1	0.1

Multipole Tolerances for NSLS-II Sextupoles

Allowed harmonics	Normal [x 10 ⁻⁴] @ 25 mm	High precision[x10 ⁻⁴] @ 25 mm
b9	1	0.5
b15	1	0.5
b21	4	0.5
Non-allowed harmonics		
b1	10	10
b2	1	1
b4	1	1
b5-b7	0.5	0.5
b8	0.1	0.1
b10-b14	0.2	0.2
b16-b20	0.1	0.2
Skew terms		
a1	5.0	5.0
a4	1.0	1.0
a5 and above	0.1	0.1

Tracking Calculations Approach

- Use Tracy Library interface
- Lattice files, optics design, sextupole settings... S. Krinsky, S. Kramer, W. Guo, J. Bengtsson
- Tracking uses 4th order symplectic integrator.
- Insertion devices may be modeled with Halbach basis Y. Wu integrator, or using kick maps
- Multipole errors, misalignment errors, orbit correction and correction for damping wiggler optics distortions.

How to Set Sextupoles?

OPA Optimization

U.S. DEPARTMENT OF ENERGY

BROOKHAVEN SCIENCE ASSOCIATES

Frequency Maps on Momentum - two different sextupole tunes

for different initial conditions J. Laskar, Physica D, 67, 257-281 (1993)

20

X-δ Frequency Map- Effect of Multipole Errors

•Unstable region increases particularly at negative momentum

But what really matters for Touschek lifetime is the momentum aperture.

Why such small change in Touschek lifetime?

•Looks like it should be more...

Answer: Touschek Lifetime is less sensitive to momentum aperture in dispersion region.

Local Touschek Scattering Rate

Touschek Lifetime for varying momentum aperture in straight and disp. region

δ _{acc} (str)	δ _{acc} (disp)	т (hr)
3%	3%	6.2
3%	2.5%	5.5
3%	2.0%	4.6
3%	1.5%	3.3
2.5%	2.5%	3.3
2.5%	2.0%	2.9
2.5%	1.5%	2.3

Momentum Aperture With Further Engineering Tolerances

and Insertion Devices

•(DW: λ =90mm, B=1.8T,n=78) •(IVU: λ =20mm, B=1.2T,n=160)

NATIONAL LABORATORY

BROOKHAVEN SCIENCE ASSOCIATES

Conclusions

- •Touschek Lifetime of 3 hours design for NSLS-II
- •Multipole errors in the dispersive magnets reduce off-momentum dynamic aperture
- •Larger magnets with tighter multipole specifications for these magnets reduce this problem.
- •Due to less scattering in dispersion regions, Touschek lifetime is

less sensitive to dispersion region momentum aperture.

- •Momentum Aperture of 2.5% in straights, 1.5% in dispersion region gives
- >3 hour lifetime (with Landau cavity). So far, adding all non-linearities and errors, NSLS-II appears to have a reasonable margin for this.

