Atomic Physics and Accelerator Sciences in the

Carsten P. Welsch

The task:

Few-body problem: Interaction with "clean" projectile.

Important:

- No (or only few) add. reaction channels,
- Possibility to control perturbation strength Z/v,
- Variation of interaction time between as => fs.

Why Antiprotons?

 $I \ge 10^{15} \text{ W/cm}^2$

Why Antiprotons?

Dominated by capture!

Why Antiprotons?

Same Structure?

Anti-Hydrogen

Same Weight?

Hydrogen

Anti-Hydrogen

Present Situation: AD @ CERN

Target

26 GeV/c p

→ 3.57 GeV/c p

Yield: 4·10⁻⁶

Cooling

Problem: 5 MeV too high for trapping!

> 99.9 % of pbars lost in degrader.

~ 10.000 pbars/shot

Cooling of antiprotons

with cold electrons

through Coulomb interaction

- ASACUSA: RFQ-D~ 2.000.000pbars/shot
 - BUT: ΔΕ/Ε, $\varepsilon_{x,y}$

t=few sec

Idea: (add some) FLAIR to FAIR

- Austria (SMI, Vienna,TU)
- Canada (York, TRIUMPF)
- Denmark (Aarhus, ISA)
- Germany (GSI, Dresden, Frankfurt, MPQ, Giessen, MPI-K, FJZ, Mainz, Tübingen, Berlin)
- Hungary (KFKI, ATOMKI, Debrecen)
- India (VECC)
- Italy (Brescia, Firenze, Genova)

- Japan (RIKEN, Tokyo)
- Netherlands (Amsterdam, FOM)
- **Poland** (Warsaw, Soltan Inst.)
- Russia (JINR, Moscow, VNIIM, St. Petersburg, Troitsk, Moskva)
- Sweden (MSL, Stockholm)
- *UK* (Queens, Wales)
- USA (Harvard, Pbar Labs, New Mexico, Texas, Indiana)

150 Scientists

15 Countries

50 Institutes

CI in Steering Committee; USR Project Leader.

FLAIR @ Facility for Antiproton and Ion Research

USR - Goals

- Variable to lowest energies
 - 300 keV ~ 20 keV
- High luminosity for in-ring experiments
- Well-defined extracted beams:
 - Small emittance
 - Small momentum spread
- Multi-user operation:
 - 2 straight sections for in-ring experiments
 - Slow and fast extraction
 - Additional beam lines possible
- Central requirements
 - $\Delta t \sim 500$ nsec for Injection in traps
 - $\Delta t \sim 2 \text{ nsec} / 10^4 \text{ ions for collision studies}$

USR: At a Glance

USR – Subprojects in QUASAR Group

How to realize nanosecond bunches?

ns Bunching

A. Papash

Steps:

- General feasibility
- 1-D simulation
- Full study

Staged approach

Deceleration of beam to 20 keV

 e^- cooling to $\Delta E/E=5.10^{-4}$

Capture beam @ 20 MHz (50 ns)

 $3\beta\lambda/2$ buncher / debuncher

Full details: EPAC 2008

Evolution in Phase Space

buncher entrance

Crucial: Dispersion in straight section!

Full details: EPAC 2008

Points not addressed here

- How to optimize the buncher geometry?
- What happens to beam with non-zero ∆p/p?
- How to get parameters of energy compressor?
- Choice of rf cavity ? Filling mode ?

Proc. European Part. Acc. Conf. (2008)

USR - Subprojects in QUASAR Group

Highly-flexible Beam Extraction

Motivation: Nuclear physics-type experiments.

First time in electrostatic ring!

Modification to USR Lattice

"Split-achromat" geometry, new concept

- Achromatic section, D=0 in straights!
- D never > 0.6 m.

USR – Subprojects in QUASAR Group

Pbar diagnostics

- Position
- Profile
- Intensity
- •

How to measure the beam characteristics?

J. Harasimowicz

A. Mokrzycka

S. Brylka

USR – Subprojects in QUASAR Group

In-ring Reaction Microscope

Design of the experiment.

M. Putignano

USR - Challenges

Add. Projects in QUASAR Group

Beam Loss Instrumentation at CTF3

A. Intermite

Halo-Measurements

J. Egberts

S. Artikova

A "typical" Monitor

- Material sciences
- Thermodynamics
- Electro-Magnetism
- Optics
- Mechanics
- Electronics
- Nuclear Physics

Multi-disciplinary field!

Diagnostics: International Role

Coordinated by QUASAR Group.

What is DITANET?

- One of the largest Marie Curie Networks ever funded by EU!
- Aim: Training of young scientists.
- Gives industry an important role.
- Allows for intersectorial collaboration.
- Recognized importance of beam diagnostics at European level!

(only 68 from 905 selected)

Further Projects in QUASAR WILLIVERPOOL Group

Field-based Beam Control

Development of Rf-Accelerators

M. Schuh

T. Junginger

Conclusion

- Research at the interface between atomic physics and accelerator sciences;
- Many challenges in the keV and the TeV-range.

