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Beam Dynamics in EMMA: Models and (some) Measurements 

1. An introduction to (or reminder about) EMMA. 

2. Beam dynamics in EMMA: what's so special? 

3. How to build a computer model for EMMA. 

4. How well does the model work? 
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EMMA: Electron Model for Many Applications 

EMMA is a prototype non-scaling fixed-field alternating gradient (nsFFAG) 
accelerator. 

• Alternating gradient: lattice composed of alternate focusing and 
defocusing quadrupoles (which also steer the beam). 

• Fixed-field: magnet strengths are fixed during acceleration (nominally 
from 10 MeV to 20 MeV). 

• Non-scaling: beam trajectory changes during acceleration. 

Potential applications: 

• Muon collider. 

• Proton therapy. 

• Accelerator-driven (thorium) 
reactors. 

EMMA provides an "electron model" 
for the above (muon or hadron) 
applications. 
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Beam Dynamics in EMMA 

A single bunch on each pulse is injected from 
ALICE. 
• Bunch charge is approximately 60 pC. 

• Energy is variable, but typically 12 MeV. 

• Pulse repetition rate is 10 Hz. 

Quadrupole magnets in EMMA 
simultaneously steer and focus. 
• Strengths and positions can be adjusted to control the 

lattice properties. 

The bunch is accelerated over a few dozen 
turns, by a number of RF cavities placed 
around the ring. 

The bunch is extracted into a diagnostics line. 

Injection and extraction are tricky: we will 
only discuss what happens during 
acceleration, once the bunch is in the ring. 
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Longitudinal Dynamics in a "Normal" Synchrotron 

Time of flight (revolution period) increases with 
energy. 

A particle arriving at an RF cavity later than it should 
receives less energy than it needs to replace 
synchrotron radiation losses. 

If the particle is not too far from the "correct" 
phase, stable synchrotron oscillations result. 

d 

Time of flight 

Energy gain from RF = 

energy loss from radiation 
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Longitudinal Dynamics in a Non-Scaling FFAG 

The lattice is designed so that the time-of-flight 
as a function of energy is a parabola. 

The shape of the longitudinal phase space is 
quite different. 

There are still stable buckets: but now a 
"serpentine acceleration" channel can be 
opened. 
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Modelling the Beam Dynamics in EMMA 

The goal is to construct a computer model that can predict the 
beam behaviour in EMMA for different lattice configurations 
(quadrupole strengths and positions). 

 

Achieving this goal will: 

• demonstrate understanding of the beam dynamics in a ns-FFAG; 

• provide a useful tool for lattice tuning and optimisation. 

 

The challenges are: 

• tracking particles with good accuracy through the complex magnetic 
field configurations in EMMA (short lengths and wide apertures); 

• extracting the dynamical properties with sufficient computational 
efficiency, to provide a practical optimisation tool. 
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Constructing the Model in Four Steps 

1. Model the magnetic fields in a single 
EMMA cell for a given lattice 
configuration. 

• i.e. solve Maxwell's equations 
numerically, using a finite-element code. 

2. Fit an analytical series to the numerical 
field data. 

• Field components expressed as series in 
the co-ordinates: fitting involves finding 
the correct coefficients. 

3. Construct a transfer map for the 
dynamics through the given field. 

• Final values of the phase space variables 
are expressed as functions (e.g. power 
series) of the initial values. 

4. Analyse the transfer map to extract the 
dynamical properties of the lattice. 

• Trajectory, tunes, chromaticity, 
time-of-flight versus energy… 
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Trajectories Through an EMMA Cell 

Controlling the trajectories through an EMMA cell is critical to achieving the 
required curve for time-of-flight versus energy (and hence for achieving 
acceleration). 
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Transverse Dynamics: Betatron Oscillations 

Truncated power-series maps are (in general) non-symplectic. 

The effects can be significant, especially if the maps are truncated at low order. 

Second-order maps Third-order maps 

Note: the above figures use a separate map calculated for each energy. 

To model the acceleration process, we need a single map covering a range of 
energies… 
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Maps with Energy Deviation 

During acceleration in EMMA, the energy deviation (assuming fixed reference 
energy) takes much larger values than the transverse variables. 

To achieve reasonable accuracy, we need much higher order maps when including 
acceleration.  But even a ninth-order map is not sufficient: we have to change the 
reference energy at some point(s) during the acceleration. 

Single seventh-order map, 

14 MeV reference energy 

Single ninth-order map, 

14 MeV reference energy 
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Spanning the Space of Lattice Configurations 

Each lattice configuration in EMMA is specified by four variables: the strengths and 
positions of the two magnets in each cell. 

Characterising the properties of any given lattice either numerically (using e.g. 
Zgoubi) or using transfer maps (e.g. COSY) takes around half an hour. 

Optimising the lattice for desired properties requires (in general) characterising 
many different lattices. 

Optimisation based on numerical tracking is not really practicable. 

But using transfer maps, we can "estimate" 
the transfer map for any desired configuration 
by interpolation between known reference 
configurations, and then obtain the dynamical 
properties directly from the map. 

Optimisation based on interpolation 
of transfer maps can be very fast… 

… but is it accurate? lattice (0,0) lattice (1,0) 

lattice (0,1) lattice (1,1) 

lattice (0.25,0.75) 
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Obtaining Transfer Maps by Interpolation 

Comparison between maps obtained by 
interpolation and by direct computation 
suggest that interpolation may be 
reasonably accurate. 

 

However, without applying a constraint to 
force the interpolated map to be 
symplectic, the effects of the symplectic 
error become very obvious. 

 

This can affect the computation of 
important quantities, such as the betatron 
tunes. 
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Mixed Variable Generating Functions 

A mixed-variable generating function expresses a transfer map as a single function, 
rather than a set of functions relating the new values of the dynamical variables to 
the old values. 

 

 

 

 

 

A map expressed in the form of a mixed-variable generating function is guaranteed 
to be symplectic. 

 

We can improve the interpolation by converting the power-series maps to mixed-
variable generating function maps, and then interpolating the mixed-variable 
generating functions. 
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A Predictive Model for EMMA 

1. The model lattice is fitted (using an optimisation routine) to a measured time-
of-flight curve. 

2. The fitted model does not agree terribly well in absolute terms to the lattice 
set up in the machine.  However… 

3. …the model correctly predicts the effects of changes to the lattice 
configuration. 

Measured time-of-flight (data 

points with error bars) compared 

with predictions from the model 

(curves). 

 

The lattices S1 etc. are obtained 

by making specified changes 

from a fitted initial lattice 

configuration. 
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Conclusions 

We have made significant progress towards the development of a predictive 
model for EMMA, based on transfer maps representing the dynamics in accurate 
models of the magnetic fields. 

Some issues still remain: in particular, why does the fitted model not agree better 
in absolute terms with the known experimental configuration? 
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