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Cornell Electron Storage Ring (CESR)

Designed to operate as an e+e-
collider with centre of mass

energies in range 3.5 GeV — 12 GeV.

Operating (in various incarnations)
since 1979.

Also includes synchrotron radiation
beamlines (Cornell High Energy
Synchrotron Source: CHESS).

Converted in 2008 to operate as a
facility for studies of electron cloud
in the parameter regime of linear
collider damping rings.
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CESR-c to CesrTA

Removal of CLEO detector, and relocation of six (out
of twelve) wigglers to zero-dispersion straight (LO).

New low-emittance optics at 2 GeV.
Upgrade to alignment, BPMs and feedback system.

Fast x-ray monitor, for bunch-by-bunch vertical beam
size measurements with micron resolution.

CesrTA ILCDR
Circumference 768 m 6476 m
Energy 2 GeV 5 GeV
Particles/bunch 2x10%0 2x1010
Bunch spacing 4 ns 3ns
Natural emittance 2.3 nm 0.5nm
Vertical emittance <20 pm 2 pm
Bunch length 7 mm 6 mm
Damping time 47 ms 21 ms
Wiggler peak field 21T 21T
Wiggler period 400 mm 400 mm
Total wiggler length 19m 230 m
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Electron cloud studies at CesrTA

e Effect of electron cloud on ultra-low emittance beams is a
critical issue for the ILC (and CLIC) damping rings.

e Suppression of electron cloud in wigglers presents challenges.

* CesrTA will allow experiments to characterise electron-cloud .
effects in the parameter regime of the LC damping rings, <
and provide opportunity to test suppression techniques.
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Low-emittance studies require low-emittance beam

Natural emittance is essentially determined by beam energy
and the optics of the lattice.

Vertical emittance is dominated by alignment and tuning
errors.

Several electron storage rings have achieved vertical
emittance < 5 pm: KEK-ATF, SLS, DLS...

Achieving the vertical emittance goal will require:

— precise alignment of magnets (quadrupoles < 100 um);

— high-performance, well-calibrated instrumentation;

— precise correction of optics errors (dispersion and coupling).
The goal for CesrTA is to achieve a vertical emittance < 20 pm,
i.e. an emittance ratio € /¢, less than 1%.
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Alignment and optics correction at CesrTA

 "Routine" correction methods include:
— survey and alignment of magnets;
— orbit and dispersion correction;
— measurement and correction of betatron phase-advance errors
(using quadrupole strengths) and betatron coupling (using skew
quadrupoles).

* Arange of techniques for characterising errors are starting to

be used regularly, or are in development:

— alignment analysis based on zero-corrector orbits;

— "detector calibration”, i.e. beam-based bpm alignment;

— AC dispersion measurements, i.e. measurement of dispersion
by recording orbits while exciting synchrotron oscillations;

— bpm gain mapping (comparing the signal measured one bpm
button with that calculated from the signals on the other three
bpm buttons);

— analysis of the orbit response matrix.
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Example: orbit and dispersion correction

0E—Jan—09 18:46:34
CTA_2085MEY_20081107

Dat: butne. 118100 .
Ref- NONE Note:
CESR Set: 126039

RMS = D.B66 . .
Averaga =  —0.09 » Resolution of bpms in the

present system is typically
around 35 um.

}jarlfmptﬁl lljrblit {m]mjll'chtg = Qesiqnj

RNS =  1.613  Dispersion measurement
marage = -0.024 .

made with:

AfRF/fRF = 10 kHZ/SOO MHZ

« Momentum compaction:

0l = 6.4x103.
Hori tal O I Data — Desi H
T spersion, () [ e = f—;sq.'ﬂ; T — « Resolution on the
gﬁ?&%ﬁ%fﬁzmmm? dlsperS|on measurement is
Ref: MONE
FESR Set- 126038 around 1 cm...

EMS = Q.G61
Avergge = 0,001

FMZ = 0.034
Averags = 0.000
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Example: betatron phase advance analysis
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Example: betatron coupling analysis

RMS = 0,081
Averaga = —0.DG5
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Correcting the vertical emittance

e Vertical emittance is generated by:
— vertical dispersion;
— betatron coupling.

 We can measure the vertical dispersion with a precision of
around 1 cm (limited by bpm resolution).

1 cm rms vertical dispersion will generate an emittance:

;)

£,=2J, <,3y> o, =20pm

e This leaves no margin for betatron coupling! What can we do?

One possible solution is to generate "dispersion bumps"

targeted on the wiggler sections, and tune directly on
beam size.
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Dispersion bumps

150 — SRR S E— - —H

LO (wiggler straight) has four skew

| | | g | | | guads on either side.
10 ............... ............... ............... ............... .............. ....... 1

This allows for control of:

— 1M, N, to take specified values at
5 5 | 5 5 | 5 centre of straight;
ol — M, =0, 1, =0 at exit of straight;

f | — closed "coupling", i.e. set the
Sl — S S T S T o' four coupling components of the
0 100 200 300 400 500 800 700 transfer matrix across the bump

s (m) to zero.

* In principle, there should be no effect
on the orbit.

16 'Hy = y,n% + Zai,nynp'y + ﬁs,nf,y. « Note that the vertical emittance
. - contribution from dispersion in the
- 1 e wigglers is given by:

al S T T S €y = Lq¥
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Dispersion bumps: closing the coupling

Note: coupling can be
characterised by a
generalisation of the lattice
functions:

(xix;) = z Biex

i,J,k
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Testing the dispersion bumps in simulation

We apply a random set of alignment errors to the quadrupoles and

sextupoles.

We apply dispersion bumps in LO to minimise the emittance: note that we
do not tune directly on dispersion.

We repeat for many different sets of alignment errors, and collect the
statistics on the dispersion, and the emittance.

The dispersion bumps have the expected effect.

s
D
o

4%}
yn
]

—a— No bump appliad

[ 8]
)
s

T

=

—F=— Dy bump only

Dy and Dpy bumps

1

Freque
M
(o]
(ui]

=
wn
-_
i =

-20 -10

10 20

Verticaldispersion {mm)

s
o
D

4%
yn
D

—#— Mo hump applied

(O8]
@D
am]

—&=— Dy bump only

.

Dy and Dpy bumps

Freque
M
@D
un]

[WEY
(@ 4]
un]

]

[HEY
@D

(g
lam]

|

an}

L

-1

0

1 2

Gradient of vertical dispersion (10°)

13/22



Testing the dispersion bumps in simulation

By applying dispersion bumps only in LO, the fraction of cases with
emittance below 20 pm increases from 30% to 50%.

Typically, there is a reduction in the vertical emittance of around 30%: some

cases show a much larger reduction, others show a very small reduction.
The LO dispersion bumps are very "local". There may be similar benefits

from applying dispersion bumps in the arcs, though in these cases, the
correction will be less local, because the skew quads are not ideally located.
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Fast x-ray beam size monitor

The goal is to provide an
instrument for bunch-by-
bunch vertical beam size
measurements, with
resolution of a few
microns.

This is still an R&D project.

Photodiode array

B T for fast x-ray beam
it L s size monitor:

|
!;|i \\I \_\\:'!l'.l"llill § 912 phOtOdiOdeS,
25 um pitch.

Jim Alexander, et al.
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Can we estimate the beam size without direct measurement?

e Various phenomena that are sensitive to the beam size have effects that
are (in principle) measurable.

* A technique that is commonly used, is to measure the Touschek lifetime.

* Advantages:
— has reasonable sensitivity to the beam size in the parameter regime of
interest;
— measurements are easy to make using standard instrumentation
(beam current monitor, and a clock).

* Disadvantages:
— Touschek scattering is a complicated effect that involves many
parameters that may not be well known;
— collecting enough data for a reasonable estimate of the vertical
emittance can be a slow process.

1_ NrZc [ D(9) L (5maxﬁx)2
T 8mo,y? 6maxaxay ’ yo, /°
€ e U
D(e) = (——e E+§J du+ (3e—eln6+2)f —du)
€

16/22



Estimating the emittance from Touschek lifetime

Since the lifetime depends on the bunch charge, the decay of

the beam current is not exactly exponential...
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Estimating the emittance from Touschek lifetime

We can compare two estimates of the lifetime:
1. lifetime from an analytical fit of the curve of current vs time over a long (20
minute) time scale;

2. lifetime from a "control system" estimate, based on rate of current decay
over a short (few second) time scale.

The comparison hints at additional effects we are not taking into account.

Potential well distortion? Intrabeam scattering? Electron cloud?

gdl_090114 024822

b = 0.801239 mA hrs
d = 2.50851 hrs

1/t (hrs™ )

1.5 2 2.5 3
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Estimating the emittance from Touschek lifetime

 Measuring the Touschek lifetime as a function of rf voltage allows us to
estimate the vertical emittance and the energy acceptance.

 From data collected in January 2009, it appears that:
— the energy acceptance is around 0.7% (much smaller than nominal);
— the vertical emittance is in the range 30 — 40 pm (better than
expected at this stage, and probably optimistic).
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Final remarks

e CesrTA has made a good start:
— January 2009 was the first proper period for studies of electron cloud
and ultra-low emittance tuning.
— The program will continue to April 2010, with five more "run" periods
of about a month each.
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Final remarks

e Collection and analysis of data on electron cloud, and development of
mitigation techniques, is the top priority.

e Ultra-low emittance is needed to minimise the extrapolation of the
electron cloud data to the linear collider damping rings.

* The experience in January 2009 was interesting and useful for developing
tools, techniques and procedures:
— dispersion bumps in the wigglers: tested but not used for tuning;
— lifetime data: tested as a technique for estimating emittance;
— orbit response matrix analysis: data collected...
— bpm gain mapping: data collected...
— zero-corrector orbits, beam-based alignment...

A determined effort to achieve 20 pm vertical emittance will require
instrumentation upgrades:
— new bpm electronics (few um resolution): much of the hardware is in
place, but switching over will be non-trivial;
— fast x-ray beam size monitor is needed for tuning and measurement of
beam with emittance of 20 pm (or less!)
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