
Alibava GUI
Alibava Systems

Table of Contents
Introduction. ..3
Starting alibava ...5
Taking data...7
Configuring alibava..9
Monitoring the data..18
Plugins for alibava-gui ..21
Hacking the alibava-gui code..28
Data analysis..32
SOAP: Communicating with alibava-gui ..41
A. Parameters of the Beetle chip ..49
B. Start-up guide: getting the motherboard out of the box...51
C. Installing the software ..54

Introduction.
alibava-gui is a graphical user interface that controls the ALIBAVA card. It is able to
configure the device, receive the data that the card sends via the USB bus and store it
in a file for further analysis. alibava-gui also monitors the data while in acquisition
mode so that the user can detect problems or just find the proper parameters to run
the system in an optimal way.

What is alibava-gui?
The alibava firmware provides 5 run modes

• Pedestals: makes a pedestal run. Alibava generates an internal trigger that will
allow to compute the baseline or pedestals and its variation (the noise)

• Calibration: makes a calibration run. Alibava programs the Beetle chips to inject
calibration pulses to all the channels in order to charactirize the electrical behaviour
of the ASICs.

• Laser synchronization: Alibava is able to send a pulse that can be used to trigger
a laser system. This run mode scans the delay between the pulse sent by alibava
and the acquisition so that the system will sample at the maximum of the signal
produced by the laser.

• Laser: makes a laser run. One needs to run the in laser synchronization mode be-
fore in order to read back the optimal signal produced by the laser.

• Source: makes a run in which the acquisition is triggered by signals above the
threshold in the input connectors.

Figure 1 shows the main window

3

Alibava GUI

Figure 1. Alibava main window

As one can see, the run types are selected on the right hand side of the window. Right
by the run type name there are buttons that, when clicked, will open a dialog window
to configure the run parameters. All the settings can be stored in a configuration
file by clicking save in the File menu. One can load different configurations clicking
on Open in the File menu. There are more configuration settings that can be set by
clicking on the different items of the Settings menu.

On the left hand side you can see the DAQ button. This button starts or stops the
acquisition. You can monitor the number of acquired events, the elapsed time, the
acquisition rate and the efficiency.The rate is integrated in 1 second time windows,
so expect 0 values while the data is being read out from the USB port. The efficiency
is the number of events that pass the criteria defined in the Analysis dialog window
(the Section called Analysis configuration).

In the middle of the window there is a collection of tabs that will allow to monitor the
data during the data acquisition and on some of the tabs one can find buttons that
will refine the information displayed on the histograms.

alibava-gui also provides the possibility to load user defined plugins that will al-
low to perform non-standard actions at different stages of the acquisition process.

4

Alibava GUI

Those plugins can be written both in C++, as shared libraries, or in Python, as nor-
mal Python scripts. However, the plugin is not active by default. In order to activate
or deactivate it one needs to toggle the state of the button named Plugin in the main
window (See Figure 1).

Finally, note the Reconnect button. Sometimes you unplug the alibava system from
the USB plug without quitting alibava-gui. When that happens you shoul dpress this
button. It will close any open device and reopen it.

Starting alibava

Setting up the environment
Windows and Mac OSX operative systems are not very restrictive with permissions
and one can usually access the serial ports with any particualr effort. Linux systems,
however, are a bit mor restictive and it may happen that one does not have the access
rights to read or write in the the serial port. In modern Linus distributions it is enough
to belong to the dialout group in order to have access to /dev/ttyUSBn device file. If
your user does not belong to that group then you will have to add it. To check if you
are already in the dialout group type

id

on the terminal.

Older distributions of Linux used the udev package. When installing alibava-gui
as a super user, a new group will be created named alibava. Also a new udev rule will
be added granting read/write permissions to the members of that group. In order to
grant any user with read/write permissions on the USB bus you will have to make
him/her a member of the alibava group. This must be made as super user by typing
the following

/usr/sbin/usermod -aG alibava {your user name}

For that to work the installation should be made as super user. If you installed
alibava-gui withour root privilegues, then you will have to create the alibava
group and install the udev rules manually as root by typing

/usr/sbin/groupadd -f alibava

followed by the execution the script install-udev.sh. The script can be found on the
top folder of the distribution bundle.

To check that the installation has been done properly, plug in an Alibava card on
your USB hub and check that there is a file called /dev/alibava0. If this is so the
udev rules are properly installed and the members of the alibava group will be able
to read from and write to the device. Also, alibava-gui will automatically detect in
which port the Alibava card is connected. If alibava-gui is not able to figure out that, it
will quit unless you force the program to try to open another device at the command
line (see the Section called How to launch the program).

5

Alibava GUI

Warning
In some versions of Linux, the udev rules defined in install-udev.sh do
not work and one can just add the user to the dialout group with the
same command as for the alibava group.

Old alibava-gui versions
In alibava-gui version older than 0.1.6-3 the program was not able to detect the Al-
ibava card and no udev rules were provided. In that case one was forced to do things
manually. In order to allow alibava-gui to read from and write to the device there
were a number of steps to follow which are explained below.

When the Alibava card is plugged in the computer, the driver decides which port to
use and alibava-gui did not have any means of discovering which one it was in an
automatic way.

After plugging in the card, one should type

dmesg

and look for the port that the driver has selected. The name is usually /dev/ttyUSBn
where n is 0 most of the times. Another problem encountered quite often is that a
normal user does not have read/write permissions. To solve that you should type

change_priv n

where n is the number you found for /dev/ttyUSBn. If it is 0, you do not need to
specify it.

Warning
change_priv needs super user permissions. That means that you
should install alibava as super user. This will make the program run
with superuser attributes even if you launch it from within your account.

How to launch the program
Once this is done, one launches the alibava application by typing

alibava-gui [options] [config_file]

where config_file a file where all the settings have been saved. The options can be

Table 1. alibava-gui options

--gui Shown the main GUI. This is the default

--no-gui The program runs without a GUI

--emulator Simulates (Emulates) the data. Useful to
get familiar with the application

--nevts=n Set n as the maximum number of events
in the run

--sample=n Number of events to acquire in the
motherboard before transmitting the
data to the PC

6

Alibava GUI

--dev=/dev/ttyUSBn Set /dev/ttyUSBn as the port to
communicate with the motherboard in
case n is not the usual 0

--out=out_file_name Sets the path and name of the output
data file

--pedestal Acquire a Pedestal run when in no-gui
mode

--source Acquire a RadSource run when in
non-gui mode. Other required settings
should be provided through a
configuration file.

--calib Acquire a Calibration run when in
non-gui mode. Other required settings
should be provided through a
configuration file.

--laser Acquire a Laser run when in non-gui
mode. Other required settings should be
provided through a configuration file.

--activate-plugin Activates the plugin if defined in the
configuration file.

--firmware=n Forces a given version of the firmware.

--soap-port=nn port number ofr the alibava-gui soap
server

In general, when running in GUI mode, all the options listed above can be set in
the various dilaogs. One could, for instance give some of the options at the start of
alibava-gui to have those values by default at the beginning. When running in non
GUI mode options need to be provided to change the default values. Note also that
some of the options in the table above assume that there is some more information
in a configuration file provided at the command line. Most of the times the default
values of the program will not procuded the expected effect. This is particularly true
for the scan parameters needed when making calibration runs.

Warning
Older versions of the alibava-gui program (before 0.4.0-1) used to
assume that the firmware version was 0. If this is not the case, when
running in non-gui mode one has to specify the firmware version. There
are currently version 0 (the very first), version 1 and version 2, which is
handled form alibava-gui version 0.4.0-1.

Taking data
Taking data is easy. Just select the run type, set it up properly and click on the DAQ
button (the one named Start in Figure 1). Now, if you want to store the data for further
analysis, you have to press the Log Data button. A dialog window will pop up where
you can select the name of the output file. When starting the run by clicking start the
data will be dumped into the data file.

The following sections describe the different run types

7

Alibava GUI

Calibration run
The calibration run has 2 main parameters: the strobe delay and the amplitude of the
test pulse. At the moment one can only scan one of those parameters at a time.

The strobe delay sets the delay between the strobe signal that generates the calibra-
tion pulse and the clock rising edge of the beetle 128th slot of the pipeline. This allows
to reconstruct the pulse shape. The amplitude controls the amplitude of the calibra-
tion pulse so that one can get the gain and offset of the characteristic curve of the
preamplifier in all the channels. Note that to find the proper value of the gain one
has to find the strobe delay where the signa reaches the maximum value.

Figure 2 shows the main parameters that can be set to define the calibration scan.
As already mentioned, only the charge (with a fixed delay) or the delay (for a fixed
charge) can be scanned at a time. One selects the type of scan with the radio buttons
at the last row of the dialog. The value of the fixed variable is set with the first two
rows (Delay and Charge), and then the definition of the scan: starting and ending
points together with the number of points in the scan.

Figure 2. Setting properties of calibration scan

The number of samples per point specifies the number of events that will be acquired
for each calibration pulse amplitude.

Note that there is button (quite hidden) with label Calib. Beetle Comparator. This
is clicked when you want to align the threshold spread of the comparotor of the
different channels. See section the Section called Calibration of the individual channel
corrections to the comparator threshold.

Laser Synchronization
Alibava is able to send a pulse that can be used to trigger a laser system. This run
mode scans the delay between the pulse sent by alibava and the acquisition so that
the system will sample at the maximum of the signal produced by the laser. The
parameters of the delay scan for the laser synchronization are set by clicking on the
button on the right of the Laser Sync. radio button. A dialog box like the one in Figure
3 will pop-up.

8

Alibava GUI

Figure 3. Laser Synchronization scan

The parameters from, to and step define the time interval that will be scanned and
the time step with which the laser delay will be increased. The number of samples
per point specifies the number of events that will be acquired for each value of the
laser delay.

RS, Laser and Pedestal run modes
Laser, source and pedestal runs are very similar modes. However some of the param-
eters are very specific to the run mode.

For instance, RS mode needs the trigger to be properly configured. This can be done
as described in the Section called External Trigger configuration.The laser run needs
the right delay between the laser strobe and the Beetle trigger, which can be set as
described in the Section called Laser config.

Configuring alibava
There are a number of ways in which you can configure alibava-gui. Once this is
done, one can always save that configuration. To save the current configuration click
on the Save or Save As items on the File menu of the main window. Saved config-
urations can be loaded afterwards either by given the configuration file path when
starting alibava-gui or by choosing a configuration file through the Open item in
the File menu. Most of the configuration parameters can be accessed through the
Settings menu as shown in Figure 4. Each of the menu items will allow to configure
different aspects of the alibava-gui behavior.

9

Alibava GUI

Figure 4. Settings accessible through the Settings item in the main window menu
bar

DAQ configuration
The DAQ has a number of parameters:

• sample size: this is the number of events stored in the mother board memory before
sending them to the PC. This is only used in Pedestal, Laser and Source modes

• number of events: maximum number of events. When then number of events ac-
quired equals this value the run stops

• Delay: if no data arrives after this delay, alibava-gui will believe there is a commu-
nication problem

• Monitor channel: This is the channel whose characteristics curve will be shown in
the monitor window

All those parameters can be set by clicking on the DAQ item of the Settings menu as
show in Figure 5

10

Alibava GUI

Figure 5. DAQ configuration window

There are two more options that control the behavior of the system.

Enable Busy

Checking this box will make the alibava motherboard send a busy signal through the
LEMO connector used for the laser pulse. This will only happen during the Radioac-
tive Source run mode. Remember that the signal output is an LVCMOS 3.3V signal
that needs to be terminated to 50Ω. When the signa lis "on" it meands that alibava is
BUSY, ie, it is not sensitive to new triggers.

Warning
Be careful with this option since you may send the strobe pulse to a
laser system that may be in danger when receiving the strobe while
switched off.

Pulse Shape Reconstruction

When running in RS mode, Alibava measures the time of the incoming trigger with
an internal TDC. The way it works is that the trigger starts the TDC and a system
clock raising edge stops it. Since the system clock has a period of 25ns, this will be
the maximum value measured by the TDC.checks this box, the system will use a
100ns clock derived from the system clock. This allows to measure longer times and,
therefore, to have a measurement of the full pulse shape by plotting the average of
the signal as a function of the TDC measured. This is scketched in Figure 6.

Figure 6. Time scheme of the TDC time

11

Alibava GUI

Beetle configuration
The Beetle parameters are set by clicking on the Beetle item of the Settings menu as
show in Figure 7. At the top of the dialog you can select which chips will be active
during the acquisition.

Figure 7. Beetle configuration

The BEETLE chip configuration parameters are described in Table A-1

Beetle Comparator configuration
One can also configure the behaviour of the Beetle comparator. This is only usefull
for those daughter boards that process the output of the comparator to produce an
autotrigger.

12

Alibava GUI

Figure 8. Beetle comparator configuration

The upper button is used to enable and disable this feature. Then one selects the
chip and sets the appropriate parameters like the polarity, trigger mode, threshold,
some advance parameters and, also, the channel mask and threshold corrections of
the individual channels. The beetle chip documentation provides more information
about all these parameters.

External Trigger configuration
The trigger for the Source run can be configured by clicking the Trigger item in the
Settings menu or the Trigger button by the RS run radio button. The dialog is show
in Figure 9. Units are in mV.

13

Alibava GUI

Figure 9. Trigger configuration

There are two types of trigger. One is the Trigger in, which uses two signals to pro-
duce the trigger. The input signals are supposed to be negative, as well as the corre-
sponding thresholds. The trigger will be fired it either both (AND) or any of the two
(OR) are below the threshold programmed.

The other trigger type is the Pulse in trigger. For this one there are two thresholds,
one positive and one negative. The board will produce a trigger for any signal which
is either above both values (a positive signal) or below both thresholds (negative). If
the input pulse falls between the two values it will not produce a trigger.

Analysis configuration
The data is monitored while acquiring data and this is displayed in a number of
histograms. The parameters defining how to find clusters, etc. are displayed in the
analysis configuration window shown in Figure 10

Figure 10. Analysis configuration

Laser config
The only parameter of the Laser run is the delay (in ns) that can be wet in the Laser
item of the Settings menu or in the text entry by the Laser radio button.

14

Alibava GUI

Figure 11. Laser config

Units are in nano seconds

Plugin configuration
The plugin configuration dialog box appears in Figure 12.

Figure 12. Plugin configuration dialog

There you can specify the plugin language, which can be either C++ or Python, a
folder to add to the search path, the name of the library or Python module to load and
the function to call. The Find Symbols button will open another window with a list
of all the callable functions in the plugin. Select one and click OK. Otherwise you will
have to type the function (or hook) name. Also note that when clicking on Browse
for the Library, both the path and the library file name will be filled. alibava-gui
will also select the language based on very simple assumptions.

Pedestals
alibava-gui can compute pedestals on-line either by making a pedestal run at the
very beginning or estimating the pedestal and noise while taking data. However, for
some run types pedestal calculation makes not sense. This is the case of the calibra-
tion, laser synchronization and laser since, a priori, some channels will always have
the same amplitude. Nevertheless, we would like to see the real pedestals subtracted
on th emonitoring histograms. To solve this we can either make a pedestal run or
load a pedestal file via the Load Pedestals item in the Settings menu. Likewise, we
can always save on a separate file a set of pedestals we are proud of via the Save
Pedestals item in the Settings menu.

The format of that pedestal file is:

• each line corresponds to one channel with line zero for channel 0

• each line contains the pedestal value, followed by a white space-like character
(space or tab) and then the noise value

15

Alibava GUI

Calibration of the individual channel corrections to the
comparator threshold
The comparators on the Beetle chip have a non negligible spread and therefore the
chip provides mechanisms to aling the thresholds of all the channels for a given
working global threshold. This is a quite involved procedure but alibava-gui pro-
vides an authomatic, yet slightly slow, procedure to do it.

Warning
It is worth noting that this will only work for on the alibava daughter
boards where the Beetle chip autotrigger is enabled.

The procedure is based on counting the number of triggers for a given configuration
of the threshold and the channel corrections. This usually produces the socalled s-
curves which, when properly normalized, yield a 1 when all the events produce a
trigger, 0.5 when the threshold is equivalent to the mean of the input charge distribu-
tioin and 0 when no event produces a trigger. This is done with the Beetle calibration
circuit. This system procudes alternate polarities for each channel, always with he
same absolute value of the input charge. So when one programs a given number of
events, only have of them will have the proper polarity. This is taken into account
when normalizing so that when the threshold is so low that we trigger on the noise
the value of the s-curve is 2, instead of 1, since we also trigger in the events with the
oposite polarity. This defines a characteristic red band in the histograms produced.
There is another "effect" that has to do with the case in which we trigger also on the
undershoot of the pulse in the events with the oposite polarity. This explains why the
s-curves have like to ending points.

The procedure is as follows:

1. Connect the output of the autotrigger in the DB to the TriggerPulse input in
the MB.

2. Configure the trigger (see the Section called External Trigger configuration) to
trigger on TriggerPulse and set the negative and positive values of the thresh-
old to -500 and 50 respectively. Other values may work as well: check with
your osciloscope.

3. Click on the Calibration settings button or item in the menu and there click on
the button with label Calib. Beetle Comparator (see the Section called Calibra-
tion run). A dialog window lile the one shown in Figure 13 will pop up.

4. Choose the analysis you want to do and click on the Start button.

5. When the analysis are over, click OK if you want to save the settings, or Cancel
otherwise.

6. Save the settings in a configuration file by clicking on the Save As.. item in the
File menu.

16

Alibava GUI

Figure 13. Calibration of the Threshold corrections for the channels

Once the window is there one chooses the target threshold (in units of electron
charge: 1 fC or 6250 e- are approx. 22.5 keV. Then we decide if we need inversion
at the input of the Beetle comparator or if we use pulse or track mode (see the Beetle
documentaion to understand these parameters).

There is, on the left, a series of check buttons that will perform a specific task.

1. Show spread: This will make a scan of the threshold DAC values for an input
calibration charge equivalent to the desired thresholds. The plot shows if the
thresholds are aligned or not as shown in Figure 14. There one can clearly see
the all the channels will have the thresholds alinged that that particular target.

2. Scan Trim DACs: This will make a scan of the threshold correction DAC for
each channel and make a linear fit of the main DAC resulting as a function
of the correction. This will be used to find the final threshold DAC with the
smallest spread among the channels.

3. Find Threshold DACs: THis has to be done together with the previous. It will
find the optimad threshold DAC that minimizes the threshold spread.

4. Comparator Gain: This will scan the threshold DAC for different input pulses
so that one can see the characteristics curve of each channel’s comparator.

5. Current threshold: This can be used to check what is the level of alignment for
the current settings. The plot produced is as shown in Figure 15. It makes a
charge scan for each channel so that we can see where the threshold is set for
each of them. In the figure it is about 6000 e-.

Select the desired analysis and click the start button. You can click again the button
to stop at any time. Then click cancel if you do not want to keep the settings or OK if
you want to keep them.

17

Alibava GUI

Figure 14. Channel comparator spread before and after alignment

Figure 15. Current settings plot

Monitoring the data
As shown in Figure 1 there is a set of tabs in the main window that show a number
of quantities relevant to the acquisition.

Figure 16. Signal histogram

Figure 16 shows the spectrum. However, do not expect to find here a landau when
acquiring in Source mode, since we plot here the signals sampled all along the pulse

18

Alibava GUI

shape. You can choose to see all the spectrum from all the chips or from individual
chips by clicking in the appropriate radio button on top of the histogram. If you want
to see the average value of the signal as a function of the TDC time registered, click
on the Time profile button and you will see the average wave form of the signal pulse
as shown in Figure 17.

Figure 17. Signal histogram

If you are debugging the system and make changes you can click on Reset histogram
and the histogram contents will be cleared so that you can see the effect of your
tweaking.

Figure 18. Event display

Figure 18 shows the contents (in ADC units) of each channel for a given event. You
can choose to see the raw data, without pedestal and common mode corrections or
the digested data by clicking on the proper button on top of the histogram.

Figure 19. Noise and common mode tracer

19

Alibava GUI

Figure 19 shows the average noise and the common mode (in ADC units) of both
chips. Note that the noise here and in the pedestals tab are not computed in the same
way and the value shown here is slightly higher than there. In the pedestal tab the
noise value is show per channel and is the RMS of the pedestal distribution. Here we
show the RMS of the ADC values of the channels without signal.

Changing histogram attributes and histogram printing
One can change the histogram attributes by clicking on top of it with the right mouse
button. A pop-up menu will appear as shown in Figure 20 .

Figure 20. Histogram menu

Clicking on the print item will let you save the histogram as a picture. You can also
save it as text so that you can recover the curve with the program of your choice.
Clicking on colors will allow you to change the background and foreground colors
of the axis, the canvas and the histogram itself. You can also change the position of
the axis, its range, change to log scale, draw filled histograms or show the histogram
statistics by activating the corresponding radio buttons.

You can also change the range of the histogram axis to zoom a given region. This is
done by selecting it with the left button of the mouse while pressing:

20

Alibava GUI

• CTRL for the X axis or

• SHIFT for the Y axis

Plugins for alibava-gui

The Plugin object
As already mentioned, alibava-gui allows to load plugins that will enable the end-
user to perform non-standard actions at very specific points of the data acquisition
process. These stages are:

1. New file: every time we open a new file to store the data

2. Start of run: at the beginning of the run

3. New event: at the beggining of each event.

4. End of event: right before the event is going to be dumped to the output file.
This gives the oportunity to filter the events or, even, change the data format
(for instance filtering out unwanted channels)

5. End of run

Figure 23 shows the places, during the acquisition loop, in which the plugin methods
are called.

The plugins can be written in C++, as shared libraries, or as Python scripts. Examples
can be found in the test folder of the distribution.

In C++ the plugins are nothing but a class that derives from Plugin in Plugin.h,
which is shown in Example 1. The test folder in the distribution bundle has an
example of a C++ plugin together with a make file (UserMakefile). The example is
described in Example 3. In the make files use the pkg-config program to get the
compilation flags and the path to to the alibava include files.

Example 1. Plugin C++ class definition

class Plugin {
Plugin();
virtual ~Plugin();
enum BlockType = {NewFile=0, StartOfRun, DataBlock, CheckPoint,

EndOfRun};
virtual void new_file(std::string &S);
virtual int start_of_run(int run_type, int nevts, int sample_size);
virtual bool new_event(int ievt);
virtual void new_point(std::string &S);
virtual void end_of_run(std::string &S);
virtual int filter_event(const EventData & data, std::string &S);
virtual void get_data_format(std::string &format);

}

The main methods in a Plugin class are:

void new_file(std::string &S);

This method is called at the beginning of a file. This will only happen when
data logging is activated. The method returns a string that will be included in
the NewFile data block of the data file. See the Section called The Alibava Data
Format to understand the data blocks.

21

Alibava GUI

int start_of_run(int run_type, int nevts, int sample_size);

This method is called at the beginning of each run. The parameters are:

• run_type: this tells you the current run type (See AlibavaGUI::Runtype in Al-
ibavaGUI.h for the possible values)

• nevts: the number of events for the current run as set by the user on the
alibava-gui GUI.

• sample_size: this is the number or events that alibava will acquire in each
acquisition

start_of_run returns an integer value that is the actual number of events that
alibava-gui will consider. If the method is not superseeded by your plugin it will
just return nevts. The idea behind this bizarre implementation is to allow the
user to perform scans on different parameters and redefine this way the total
number of events from the number of scan poitns and the number of events per
point.

void end_of_run(std::string &S);

This is called at the end of each run. It can return a buffer with some user data
that will be included in the EndOfRun data block of the data file. See the Section
called The Alibava Data Format to understand the data blocks.

bool new_event(int evt);

This method is called at the beggining of each event. The argument evt is the
current event number.

It returns a boolean which is

• true: when we want to right a CheckPoint block in the data before the cur-
rent event. The actual content of the CheckPoint block will be given by the
new_point method which will only be called when new_event returns true.

• false: new_point will not be called for this event.

The idea behind this is first, to have a handle right at the beginning of an event
and, second, to decide whether we want to add extra information before this
event on the data file. This extra information could be the time of the day or,
more interesting, the values of the parameters of a scan when a new scan point
is going to start.

void new_point(std::string &S);

This method is called only when new_event has returned true as explained
above. It returns a string that will be included in a CheckPoint data block right
before the current event DataBlock (See the Section called The Alibava Data
Format to understand the data blocks). This is usefull to store in the file the
parameters of a user-defined scan or some information that you would like to
write periodically, like humidity (if you can measure it), detector current, etc.

Warning
If you use AsciiRoot (see the Section called The DataFile-
Root class), to access the CheckPoint data you will have to
write your own class deriving from AsciiRoot implementing
the method check_point.

int filter_event(const EventData & data, std::string &S);

This is called at the end of an event. The idea is that the user can change the
information and the format of a normal DataBlock (see the Section called The
Alibava Data Format). A good example could be a laser scan in which you would
only be interested in very few channels. The method returns a string which, if not

22

Alibava GUI

empty, will be writen in the DataBlock instead of the normal data. Alternatively,
the user may only be interested in monitoring the data and wishes to keep the
default format for the data file. In this case, the output string S should be empty,
otherwise the program will write the contents on that string.

Warning
If you change the BlockData format then you will have
to use a class which derives from AsciiRoot (see the
Section called The DataFileRoot class) and implements
the new_data_block method. Also the pedestal and noise
values sotred int he data file will loose their meaning and will
be unsusable.

void get_data_format(const std::string &data_format);

The plugin returns in data_format a description of the data format in the data
chunck returned by filter_event. The format is specified as a comma sepa-
rated list of items of the form

name/fmt

where name is the name to be given to the array and fmt a string describing the
type.

It follows the convention of the struct module in Python.

Type description:

• Optional first char

=: native order, std. size & alignment

<: little-endian, std. size & alignment

>: big-endian, std. size & alignment

Followed by a number to specify dimension.

Then comes the type:

c - char

b/B - signed/unsigned byte

h/H - signed/unsigned short

i/I - signed/unsigned int

l/L - signed/unsigned long

f - float

d - double

No other types are allowed

In Python the plugin class is as shown in Example 2.

Example 2. Definition of a Python plugin class

class Plugin (extendsobject) :
def new_file(self) :
def start_of_run(self, run_type, nevts, sample_size) :
def new_event(self, ievt) :
def new_point(self) :
def end_of_run(self) :
def filter_event(self, time, temperature, value, data) :

23

Alibava GUI

The parameters, return values and names of the Python methods are like in C++. The
only different method is filter_event since it has a different signature.

string filter_event(self, time, temperature, value, data);

The parameters of this method are:

• time: an integer with the value of the Alibava TDC

• temperature: an integer with the value of the temperature measured by Al-
ibava

• value: the value of the scan variable in the predefined scans (delay in laser
synchronization and injected charge in calibration)

• data: an array of 256 integers with the ADC values

Note that the values of time, temperature and value are not decoded and there-
fore their meaning is as described in Table 4. See the description of the C++
method for more information and warnings.

Plugin Examples
Plugin examples can be found in the folder test on the distribution bundle.

C++ example
In order to make a useful plugin, you have to create your own class implementing
some of the methods in Plugin. An example of such a class implementing a user
defined scan is shown in Example 3.

Example 3. A C++ plugin to perform a scan

/*
* test_plugin.cc
*
* This is an example of a plugin writen in C++.
* Look at the documentation in PLugin.h
*
* Created on: Jul 24, 2009
* Author: lacasta
*/

#include <iostream>
#include <sstream>
#include <Plugin.h>
#include "NewPoint.h"

/**
* This is an implementation of the Plugin class.
* It is a simple example that will make a scan.
* We may use the new_file method to store the parameters
* of the scan, new_event to determine when a new
* point is the scan is needed and new_point to store
* the actual values of
* the scan variables.
*/

class MyPlugin : public Plugin
{

private:
int npoints; // N. of pts we want for the scan

24

Alibava GUI

int nevt_per_point; // N. of pts acquired in each point
int run_type; // type of run
int current_event; // current event number
EventCntr handler; // The object that decides when

// to change to the next point

public:
// Constructor with default values
MyPlugin() :

npoints(50), nevt_per_point(1000), run_type(-1),
handler(nevt_per_point), current_event(0) {}

// destructor
~MyPlugin() {}

/**
* Declaration of Plugin methods to be implemented
*/
void new_file(std::string &S);
int start_of_run(int run_type, int nevts, int sample_size);
void end_of_run(std::string &S);
bool new_event(int evt);
void new_point(std::string &S);

};

void MyPlugin::new_file(std::string &rc)
{

rc = "New file";
std::cout << "new_file" << std::endl;

}

int MyPlugin::start_of_run(int runtype, int nevts, int sample_size)
{

run_type = runtype;
std::cout << "start_of_run " << nevts << " events. "

<< "Runtype " << run_type
<< std::endl;

if (sample_size > handler.value())
{

handler.value(sample_size);
nevt_per_point = sample_size;

}
handler.reset();
return npoints*nevt_per_point;

}

void MyPlugin::end_of_run(std::string &rc)
{

rc = "end_of_run";
std::cout << "end_of_run" << std::endl;

}

bool MyPlugin::new_event(int ievt)
{

current_event = ievt;
return handler(ievt);

}

void MyPlugin::new_point(std::string &rc)
25

Alibava GUI

{
std::ostringstream ostr;
ostr << "new point: " << current_event << std::endl;
std::cout << ostr.str();
rc = ostr.str();

}

/*
* This is the factory function or "hook" in terms of the
* Plugin dialog box where the instance of you Plugin
* implementation is created.
*/

extern "C"
{

Plugin *create_plugin()
{

MyPlugin *plugin = new MyPlugin();
return plugin;

}
}

In addition to that, we need a factory function that will create the class instance. The
name of that function should be specified in the Plugin dialog box when the hook
name is required. An example of such a factory function is shown at the very end of
Example 3. Note that the function is declared as extern "C". This is important since
otherwise alibava-gui will not be able to find it when the shared library is loaded. See
the complete example, together with the make file (UserMakefile) in the test folder
of the distributed software. In your make files use the pkg-config program to get
the compilation flags and the path to to the alibava include files.

Python example
As already mentioned, plugins can also be written as Python scripts. An example
similar to the previous C++ plugin is shown in

Example 4. An example of a Python plugin

""" An example of an alibava plugin
This example implements a user defined scan

"""

import time
import inspect

#
Define some usefull constants
#
Block types
NewFile,StartOfRun, DataBlock, CheckPoint, EndOfRun = range(0,5)

Run types
Unknown,Calibration,LaserSync,Laser,RadSource,Pedestal,LastRType = range(0,7)

class MyPlugin(object):
""" This is an object that can be loaded by alibava to

be called at certain stages of the DAQ process.

"""
26

Alibava GUI

def __init__(self):
""" Initialization
"""
self.current_point = 0
self.current_event = 0
self.npoints = 50
self.nevt_per_point = 1000
self.handler = EventCounter(self.nevt_per_point)
self.run_type = -1

def new_file(self):
""" This is called at the beginning of each file

It should return a string with information
that will be stored in the file header

"""
print "new_file"
return "Hola !!!"

def start_of_run(self, run_type, nevts, sample_size):
""" This is called at the beginning of each run.

It should return the total number of events
that we want to acquire. As an extra input we
have the size of the data chunk that Alibava
acquires each time we activate the acquisition.

Run types are predefined in the variables:
Unknown,Calibration,LaserSync,Laser,RadSource,Pedestal

"""
info_msg("Starting a new run")
self.handler.start()
self.run_type = run_type
write_msg("start_of_run %d events. Run type: %d"

%
(nevts, run_type))

write_msg("...sample size %d" % (sample_size))

self.handler.reset()
if sample_size > self.handler.nevts:

print "Changing handler.nevts"
self.handler.nevts = sample_size
print "...new value", self.handler.nevts
self.nevt_per_point = sample_size

if run_type!= RadSource and run_type!=Laser:
return nevts

else:
Here we return the number of events we really
want to acquire given that we need to scan npoints
with nevt_per_point events per point.
return self.npoints * self.nevt_per_point

def end_of_run(self):
""" Called at the end of a run
"""
write_msg("end_of_run")
return "end_of_run"

def new_event(self, ievt):
""" This is called at the beginning of each event.

Should return True if we want alibava to call
27

Alibava GUI

the method new_point.

The input parameter is the current event number
"""
self.current_event = ievt
if self.handler.check(ievt):

return True
else:

return False

def move_axis(self):
""" A dummy function where we could, for instance,

move the axis that hole the laser or the source
"""
pass

def new_point(self):
""" Called every time that new_event returns True
"""
self.current_point += 1
self.move_axis()
print "new_point %d event %d" % (self.current_point,

self.current_event)
return "Current axis position is %d" % self.current_point

def create_plugin():
""" This is the ’hook’. This is the method called to

create an instance of the MyPlugin class
"""

write_msg("Loading %s" % __name__)
plugin = MyPlugin()
return plugin

Note that as in the case of C++ we also need here a factory function or hook to create
the instance of the Plugin and pass it to Alibava.

Hacking the alibava-gui code
alibava-gui is written in C++. The amount of classes and source files can be a little
bit confusing for a beginner that wants to know where and how should a change,
improvement or patch be applied. In order to facilitate that, a short description of the
code organization will be given here.

There three main groups of objects in alibava-gui. In the first group we have the
objects in charge of talking to the USB port of Alibava, we then have the objects in
charge of handling the configuration and, finally the objects in charge of the data ac-
quisition. The main object arbitrating all the interactions with Alibava is AlibavaGUI,
which also controls the graphical user interface (GUI) of alibava-gui

USB communication objects
The Alibava module can be read and configured via an USB port. alibava-gui has
decoupled the raw USB communication from the Alibava command generation and
readout. This can be seen on Figure 21. The main class, AlibavaGUI, has an object,
Alibava, which is the responsible of generating the commands for the hardware an of
reading out the data. It does so with the help of yet another object interface, USBport,

28

Alibava GUI

which defines the protocol to interact with the USB port. The different implemen-
tations of an USBport object have to do with the kernel driver one uses to access
the USB data. There are, currently, four of those incarnations of USBport which are
USBd2xx, USBserial, USBFifo and USBemulator.

Figure 21. USB communications

USBserial makes used of the usbserial driver in Linux. USBd2xx uses the FTDI li-
brary provided by the USB chip vendor. Finally, USBFifo creates a memory Fifo for
the USB input from which the user reads. All the raw operations with the USB device
are delegated in a USBport object given at the instantiation. The default for alibava-
gui is USBFifo using USBserial. There is still a fourth one, USBemulator, that con-
tacts a software daemon that emulates the behavior of the Alibava board. With US-
Bemulator one can exercise the program without the need of having any hardware
connected to the computer.

The DAQ objects
AlibavaGUI handles the acquisition process by communicating with a RunManager.
Such an object has a number of methods that are called a very precise stages of the
acquisition. The role of the RunManager is to impliment the differences of the dif-
ferent among the different run modes and make them invisible to the DAQ manager
which is AlibavaGUI.

Figure Figure 22 shows the different RunManager objects defined in the program.
Each of them will handle one of the different run modes.

29

Alibava GUI

Figure 22. The RunManager

The DAQ loop
The DAQ loop is sketched in Figure 23. There we can see the main players of the ac-
quisition loop. AlibavaGUI calls the open method which opens the device, sends
a reset command and configures the beetle and the trigger. Then, new_file and
start_of_run methods of the Plugin are called. At this stage the initialization is
over and the program enters the acquisition loop by calling the acquire method in
AlibavaGUI. In Figure 23 we have illustrated a calibration run, but the behaviour is
the same for other run modes of alibava-gui.

30

Alibava GUI

Figure 23. DAQ loop

The configuration objects
Most of the alibava-gui parameters can be configured. The values can be saved to a
configuration file or restored from a previously saved configuration file. Each of the
parts that can be configured store the data in a class that derives from ConfigFile.

31

Alibava GUI

Figure 24 shows all those classes. For each of them, there is a class (same name with a
GUI suffix) that allows to see, set and modifiy on dialog windows the current values
of the parameters.

Figure 24. Configuration objects

Data analysis.
Alibava GUI can store the data with 2 different formats. The first one is a binary
file with a proprietary format which is there for historical reasons. The second data
format uses HDF5 which can easily be read from python, Matlab or Octave. The
following sections describe the two different formats.

The Alibava Data Format

Binary Data format
The data is stored in binary form. However, the format of the data files is quite simple
and it is shown in Table 2. For the sizes used in the tables we follow the convention:

uint32

An unsigned 32 bit integer

32

Alibava GUI

uint16

An unsigned 16 bit integer

int16

A signed 16 bit integer

int32

A signed 32 bit

char

An 8bit character (1 byte)

Table 2. Data Format

Data size and type Meaning

uint32 Time of start of run

int32 Run type. The run type can have
various values: 1. Calibration run

2. Laser Sync.

3. Laser

4. Rad. source

5. Pedestal

uint32 Header length (header_length)

header_length * char Header data. The header data contains
some information that is useful when
analyzing the data. The header is stored
as an ASCII string and the format
is:• In the case of calibration of laser
sync:

• Vn.n|npts;from;to;step

• In the case of laser or rad. source:

• Vn.n|num_events;sample_size

256 * double (32 bit) Pedestals (ADC units)

256 * double (32 bit) Noise (ADC units)

33

Alibava GUI

Data size and type Meaning
Datablock Following the overall header of the file

describing the parameters of the
alibava run there are a number of
DataBlocks each containing specific
information. All the data blocks have
the same structure, which is described
in Table 4. The possible DataBlocks
are:• NewFile

• StartOfRun

• DataBlock

• CheckPoint

• EndOfRun

The file data has an overall header, containing the running parameters of Alibava
and then a series of data blocks. The data blocks have all the same format, which
is described in Table 3. The data itself is one of those data blocks and is the only
one which is always written by alibava-gui. The rest are only written when the user
activates a plugin and any of the methods returns a data buffer.

Table 3. Format of a data Block

Data size and type Meaning

uint32: 0xcafennnn Header of the data block. nnnn is the
data block type. The different types can
be: 1. NewFile.

2. Start of Run

3. Data

4. Check Point

5. End of Run

uint32 The size in bytes of the block data

size * char The block data.

Only the Data block has a fixed format, given by Alibava. The format of the other
blocks depends on the plugin activated by the user. The format of the Data block in
show in Table 4

Table 4. Format of the Data block

Data size and type Meaning

0xcafe0002 The block data

522 The size of the block data

uint32 Clock counter since the last MB reset.
The clock is around 40 MHz but for an
accurate value it should be calibrated
with a pulse generator used as trigger.

34

Alibava GUI

Data size and type Meaning
uint32 Time as read in the TDC. T =

100.0*(ipart + (fpart/65535.))
whereipart

(X & 0xFFFF0000)>>16

fpart

sign(ipart)*(X & 0xFFFF)

uint16 Coded Temperature (T = 0.12*X-39.8)

256 * uint16 The ADC values of the 256 channels

double (32 bit) An extra value that corresponds to the
scanned variable in the predefined
scans: Calibration (charge) and Laser
synchronization (delay)

An example on how to deal with the data can be found in AsciiRoot.cc in the
root_macros folder.

The HDF5 data format
In HDF5 the data is structured in groups each having different information. There are
2 main groups. The header group contains general information about the run. It has
the setup attribute that specifies the type of run and some other useful information,
like the time of the acquisition. It also contains the pedestals and noise of the active
channels. The events group has four tables with contain the data collected for each
event: the value on each channel in signal, the time given by the TDC (see Figure 6),
the temperature measured and a sort of timestamp as a 40MHz clock counter since
the last reset of the mother board. See Figure 25.

35

Alibava GUI

Figure 25. HDF5 file data format

In the Calibration or Laser Scan runs the scan group contains the points at which
the scanned values change as well as the description of the scan. Have a look at
HDFRoot.cc which provides the data class that handles the hdf5 data.

36

Alibava GUI

Analysing the data
Knowing the data format you can write your own program to analyze the data in
your preferred language. However, Alibava provides a collection of root macros (still
evolving) to read the data files and produce histograms. The root macros are in the
root_macros folder of the alibava distribution. If you have ROOT already installed
during the alibava installation, you will find, at the end of the installation process
the ROOT libraries in INSTALL_DIR/lib/alibava/root. INSTALL_DIR is usually
/usr/local unless you specify it differently as explained in Appendix C.

If you are not planning to modify the source code of the root macros you can use
those libraries. To do so, you will need in your working directory a rootlogon.C file
that loads them when root is initialized from within that directory. It could look like
the one showed in Example 5

Example 5. rootlogon.C for using precompiled ROOT libraries

#define DYNPATH "INSTALL_DIR/lib"
#define INCPATH "INSTALL_DIR/include/alibava/root"

void SLload(char *lnam)
{

if (gSystem->Load(lnam))
cout << ":> " << lnam << " NOT loaded " << endl;

else
cout << ":> " << lnam << " loaded " << endl;

}

void rootlogon()
{

// Add the library folder in the dynamic path so that ROOT finds
// the library
TString ss = gSystem->GetDynamicPath();
gSystem->SetDynamicPath(ss+":"+DYNPATH);

// Add the Alibava include path in the ROOT include path so that
// you can include Alibava header files in your own macros
gInterpreter->AddIncludePath(INCPATH);

// Load the library
std::cout << "==" << std::endl;
SLload("libAlibavaRoot.so");
std::cout << "==" << std::endl;

// This is cosmetics
gROOT->SetStyle("Plain");
gStyle->SetPalette(1);
init_landau();

}

If you want to make modifications to the source of the ROOT macros you will need
to run make on the root_macros folder and, eventually, make install to install the
"modified libraries". You can just copy the libAlibavaRoot.so (libAlibavaRoot.dylib
in MAC OSX) in a place where ROOT can find it.

In any of the two cases, the best is to start executing a the sin_preguntas function
that will do almost everything for you.

37

Alibava GUI

Example 6. The make-all-for-you function prototype

void sin_preguntas(DataFileRoot *A, const char *data_file0, const char*
cal_file0, const char *ped_file0, int polarity0, bool dofittrue, int
tcd05, int tdc115);

where the arguments have the following meaning:

A

a pointer to a user supplied DataFileRoot (or descendant) object. Usual imple-
mentations are AsciiRoot, to interpret the data with the binary data as described
in the Section called Binary Data format, or an HDFRoot object to interpret the
HDF5 data described in the Section called The HDF5 data format. One can also
inherit from any of these two to interpret the data produced by a user defined
plugin. See the Section called The DataFileRoot class. The easiest way to get the
pointer is with the static DataFileRoot method OpenFile with is able to deter-
mine the file type and creates the proper class pointer.

DataFile *DataFileRoot::OpenFile(const char *file_path, const char
*pedfile0, const char *gainfile0);

data_file

The path of the data file to be analyzed. If NULL, the current file in A will be
used

cal_file

The path of a calibration file. It can be an Alibava data file produced during a
calibration run or an ASCII text file with as many lines as channels with gain
and offset in each line. If you do not have this file, set 0 here. The only difference
is that if the calibration file the histogram units will be in electrons. Otherwise
they will be in ADC units.

ped_file

compute pedestals or an ascii text file with as many lines as channels and
pedestal and noise for each channel. If no file is given, sin_preguntas will use
the data file to compute pedestals.

polarity

this is the expected polarity of the signal (or the bias voltage): -1 for negative
signals and +1 for positive signals.

dofit

this is a boolean that specifies whether the program should try to fit a landau to
the signal histogram. If true is given it will do the fit.

tdc0, tdc1

Define a time window around the peak of the pulse shape to produce the signal
histogram

38

Alibava GUI

In any case you can have a look there to see how the data is handled in the usual cases.
Have a look at analysis.cc to see how the DataFileRoot class is used and how data
is analyzed in the examples provided.

The DataFileRoot class
In the root_macros folder you will find a number of example files to analyze the data.
They do not intend to be a standard but just examples. At least this is how they were
born, though they have been evolving and, as of today, they are too complicated an
example. However the DaraFileRoot class can still serve as a good tool to read the
files and to access the current data to make your own analysis.

Most of the methods in DataFileRoot are applied indistinctible to all the channels
in a chip of the DB. However, some of them can be applied just to a set of channels.
These sets or regions are defined with the ChanList class. This class is described in

Example 7. The ChanList class definition

class ChanList {
public ChanList(const char * list_def = 0);
public void Set(const char * list_def);

}

The DataFileRoot class definition is shown in Example 8. Only a few methods are
show here. For the complete definition of the class, please look in DataFileRoot.h.

Example 8. The AsciiRoot class definition

class DataFileRoot {
public AsciiRoot(const char * data_file);
public ~AsciiRoot();
public enum BlockType = {NewFile=0, StartOfRun, DataBlock, CheckPoint,

EndOfRun};
public bool valid();
public void open(const char * data_file);
public void close();
public void rewind();
public int read_event();

// Plugin extra data Blocks
public virtual void new_file(int size, const char * data);
public virtual void start_of_run(int size, const char * data);
public virtual void check_point(int size, const char * data);
public virtual void new_data_block(int size, const char * data);
public virtual void end_of_run(int size, const char * data);
public void set_data(int size, const unsigned short * data);

// Analysis methods
public TH2 * compute_pedestals(int mxevts = -1, bool do_cmmd = true);
public void compute_pedestals_fast(int mxevts = -1, double ped_weight = 0.01, double noise_weight = 0.001);
public void load_pedestals(const char * file_name);
public void save_pedestals(const char * file_name);
public void load_gain(const char * file_name);
public void load_masking(const char * file_name);

// Anaylsis in strip regions
public int n_channel_list();
public void add_channel_list(const ChanList & C);
public void clear_channel_lists();
public ChanList get_channel_list(int i);
public void find_clusters(const ChanList & C);
public void common_mode(const ChanList & C, bool correct = false);

// Debugging methods
public void spy_data(bool with_signal = false, int nevt = 1);
public TH1 * show_pedestals();

39

Alibava GUI

public TH1 * show_noise();
}

By default, DataFileRoot only reads the DataBlock which is the only that has a more
or less defined format. If the user has created other data blocks with a user-defined
plugin, then he/she will have to define a class which derives from AsciiRoot and
implements the methods that receive the data from those extra blocks. Those methods
are explained below

AsciiRootconstchar *data_file

The constructor. data_file is the path of the data file.

public void new_file(int size, const char * data);

This method is called whenever a NewFile block is found on the file. The argu-
ments are the size of the block data and the data itself (see Table 3).

public void start_of_run(int size, const char * data);

This method is called when a StartOfRun block is found on the data file. The
arguments are the size of the block data and the data itself (see).

public void check_point(int size, const char * data);

This method is called when a CheckPoint block is found in the data file. The
arguments are the size of the block data and the data itself (see Table 3).

void new_data_block(int size, const char * data);

This method is called when a DataBlock is found in the data file. The main use
of this method is to decode the event data when a Plugin::filter_event method (
see Example 1) has modified the default data format during the acquisition. The
arguments are the size of the block data and the data itself (see Table 4). This
method should call set_data in order to set the active channels and their ADC
values.

Warning
Note that when you change the default format in the
DataBlock, the pedestal and noise values stored in the file
loose their meaning and you will have to recompute them
with compute_pedestals or compute_pedestals_fast

void end_of_run(int size, const char * data);

This method is called when an EndOfRun block is found in the data file. The
arguments are the size of the block data and the data itself (see Table 3).

void set_data(int size, const unsigned short * data);

This method should be used when the user has modified the DataBlock format.
You should provide the number of channels (size) and an array with the ADC
values (data)

void load_pedestals(const char * file_name);
void save_pedestals(const char * file_name);

load/save pedestals from/to a file. The file is a simple ASCII file, each line con-
taining the pedestal and noise values of a channel. Line i corresponds to channel
i.

40

Alibava GUI

void load_gain(const char * file_name);

Load the gain factors (ADC counts to electrons) of the channels. The input file
is an ASCII file, each line containing the channel number followed by the gain
value.

TH2 * compute_pedestals(int mxevts = -1, bool do_cmmd = true);

This method computes the pedestals in the usual way. What it does is to produce,
for each channel, a histogram with all the ADC values and fit a gaussian to the
peak with the lowest mean. The pedestal and noise of that channel will be the
mean and the sigma of the gaussian fit. It returns a 2D histogram showing the
distribution of all the channels. The method parameters are:

• mxevts: number of events to use in the pedestal calculation. If negative, then
all the events in the file will be used.

• do_cmmd: if set to true, the algorithm will make common mode subtraction
on an event by event basis.

void compute_pedestals_fast(int mxevts = -1, double ped_weight = 0.01, double noise_weight = 0.001);

This method computes the pedestals with a somewhat different algorithm than
compute_pedestals. It tries to follow any change of the pedestal and the noise
of the channels and updates their values. It is the method that alibava-gui
uses to monitor the data during the acquisition. For analysis one should use
compute_pedestals.

void spy_data(bool with_signal = false, int nevt = -1);

This method is very useful to debug the data. It shows a pannel of histograms
for a single event, like the raw data, processed data, common mode noise, found
clusters, etc. If the first argument is true it will only show events with signal,
skipping the events where no clusters have been found. The second argument is
the number of events you want to see. The default is to show only one event at a
time, but you could see as many as the number indicated.

For more information take a look at DataFileRoot.h and the source code in DataFile-
Root.cc. In the test folder of the distribution bundle you will also find some examples.

SOAP: Communicating with alibava-gui
alibava-gui can also work as a SOAP server. This means that we can send a num-
ber (very limited) of commands to the alibava-gui process to start or stop a run
and, also, to retrieve some information about the status of the acquisition. The SOAP
server and client libraries are implemented using the gSOAP toolkit for Web Ser-
vices11

The SOAP commands are summarized below:

void getStatus(in int request, out Status status);

Returns the status of the acquisition in a structure of type Status, described in
Example 9. The request parameter can be ignored and one can send any value,
usually 0.

void Reset(in value);

Resets the board

41

Alibava GUI

void startRun(in DAQParam daqParam, out base64binary data);

Starts a run with the parameters specified in a structure of type DAQParam de-
scribed in Example 11. It returns a data block which contains various histograms.
This is a synchronous methods and will not return until the run is over.

void startRunAsync(in daqParam);

Starts a run with the parameters specified in a structure of type DAQParam de-
scribed in Example 11. It returns immediately. You should use the getStatus
method to check the status of the run.

void Reset(in value);

Resets the board

void stopRun(in int value, out int response);

Stops the current run. The value parameter has no meaning and any value is
accepted. The output parameter, response, with return 0 if the operation was
succesful and an error code otherwise.

void setDataFile(in string fileName, out int response);

Sets the name of the data file and forces alibava-gui to log data into that file.
The output parameter, response, with return 0 if the operation was succesful
and an error code otherwise.

void setParameter(in ParValue value, out int response);

Set the values of some running parameters like some registers of the Beetle chips.

ParValue, as shown in Example 10 is a pair of a name and a value. The name
identifies the parameter. Parameter names are shown in Table 5.

void getHistogram(in string hstName, in string hstType, out int response);

Gets the picture of the historam hstName with type hstType, which can be any
of: png, jpg, svg, eps and pdf. The names of the available histograms are listed in
Table 6. Note, however, that the histograms are produced only when the server
is run in GUI mode.

Example 9. The Status structure

class Status {
public string status;
public time time;
public int nexpected;
public int ntrigger;
public double rate;
public string run_type;
public double value;

}

Example 10. The ParValue struc

class ParValue {
public string name;
public string value;

}

42

Alibava GUI

Example 11. The DAQParam structure

class DAQParam {
public int runType;
public int numEvents;
public int sampleSize;
public int nbin;
public double xmin;
public double xmax;

}

Table 5. Names of the parameters that can be changed with setParameter. The table
does not show the parameters tht refer to a beetle register. Those names are the
same as in Table A-1

Parameter Names Description

trgIn Switches ON/OFF Trigger In

thrsIn1 Threshold for the first TrigIn comparator

thrsIn2 Threshodl for the second TrigIn
comparator

trgAND Set AND as the operation between In1
and In2

trgOR Set OR as the operation between In1 and
In2

trgPulse Switches ON/OFF Pulse

thrsPulse- Nevative threshold for TrigPulse

thrsPulse+ Positive threshold for TrigPuls

enableComp Switches ON/OFF the Beetle
comparator

trackMode Set the comparator working mode to
track

pulseMode Set the comparator working mode to
pulse

compPolarity Sets the polarity for the comparator

mainTh It sets the main comparator settings. The
parameter name can be followed by a
number specifying a particular chip. If
no number is given, the valu will be
applied to to all chips.

deltaTh The parameter name can be followed by
a number specifying a particular chip. If
no number is given, the valu will be
applied to to all chips.

trimCh<n> Sets the vector of corrections for
trimming the threshold. <n> is the chip
number and should be specified.

43

Alibava GUI

Parameter Names Description
maskCh<n> Sets the vector of corrections for

trimming the threshold. <n> is the chip
number and should be specified.

fileFormat Set the data format in the data file. Valid
values are hdf and alibava

Table 6. Names of the histograms that can be retrieved as pictures.

Histogram Name Description

hstSignal The spectrum

hstPedestal The pedestals of all the channels

hstNoise The noise of all the channels

hstHitmap The hitmap

hstTemp The tracer of the measured temperature

hstTime The tracer of the TDC time

hstEvent The event viewer. It show, for a given
event, the content of each channel.

hstCmmdNoise The noise from the common mode

hstCmmd The common mode

The data returned by the startRun consists of 3 histograms in most cases. The first
contains the spectrum, the second the mean value of the signal seen by each channel
and the third the rms of the signal seen by each channel. In a Pedestal run the last two
histograms would correspond to the pedestals and noise respectively. The format of
the data is described in Table 7.

Table 7. Format of the data from startRun

Size and type Description

int32 number of histograms

For each histogram

int32 number of bins

double xmin

double xmax

nbin * double data chunk with nbin doubles

There are available a Python and a C++ wrap classes to hide the SOAP complexity to
the user. These are described in the Section called SOAP examples.

SOAP examples
The test folder in the distribution contains some examples that may help understand-
ing the procedure to communicate with alibava-gui via SOAP. The examples are
written in two languages, python and C++. There are Python and C++ classes that
hide the complexity of the SOAP implementation and privide a much easier inter-
face. The interface is very similar in both programming languages.

44

Alibava GUI

Example 12. SOAP interface

class Alibava {
Alibava(const char * uri = 0);
void connect(in const char * uri);
getStatus(out Status &status);
Reset(in int val);
setDataFile(in string &file_name);
public int setParameter(in string &name, in string &value);
int getMask();
void stopRun();
startPedestalRun(int nevt, bool async, int nbin = 512, int xmin = -512, int xmax = 512, int nsample = 100);
startSourceRun(int nevt, bool async, int nbin = 512, int xmin = -512, int xmax = 512, int nsample = 100);
startLaserRun(int nevt, bool async, int nbin = 512, int xmin = -512, int xmax = 512, int nsample = 100);
startCalibrationRun(bool async, int nevt_per_point = 50, int npts = 10, double vfrom = 0.0, double vto = 30000.0, bool is_charge = true);
startLaserSync(bool async, int nevt_per_point = 50, int npts = 10, double vfrom = 0.0, double vto = 512.0);
startChargeScan(bool async, int nevt_per_point = 50, int npts = 10, double vfrom = 0.0, double vto = 30000.0);

}

The histograms returned by the methods that start a synchronous run are retrieved
differently in python and C++. The histograms are returned directly by the method in
python, while in C++ one need to retrieve them by calling the get_histogram method.
See the examples below.

Python example
In the case of python, we recomend to have SOAPpy installed in the system. It can be
downloaded from http://sourceforge.net/projects/pywebsvcs/files/SOAP.py. It is
also in most of the Linux distributions so the best is to use the one provided by your
particular distribution if you are using Linux. The example below uses this python
package. There are two parts. One that hides all the complexity of the SOAP data
types intrinsic to Albava and the other the one that contains your actual commands.

The first one is shown in Example 13 and the second in Example 14.

Example 13. alibavaSOAP: internals to alibava SOAP structures in Python

#!/usr/bin/env python
"""
Example of a soap client for alibava
"""
import sys
from alibavaSOAP import Alibava, Status
import SOAPpy

def main(host="localhost", port=10000):
server = Alibava(host, port)

S = Status(server.getStatus())
print S
R = server.stopRun()

R = server.startPedestalRun(1000)
S = Status(server.getStatus())
print S

45

Alibava GUI

R = server.startLaserRun(1000, nbin=32, xmin=-512, xmax=512)
S = Status(server.getStatus())
print S
for hst in R:

print hst

server.setDataFile("alibava_data.dat")
R= server.startSourceRun(1000, nbin=32)
for hst in R:

print hst

R = server.startCalibrationRun(100, 20, 0, 30000)
for hst in R:

print hst

#SOAPpy.Config.debug=1
server.setParameter("Isha", 32)
server.setParameter("Vfs", 19)
server.setParameter("trgPulse",1)

mask=”
for i in range(0,128):

if i%4 : mask+=’1’
else: mask+=’0’

server.setParameter("maskCh1", mask)

trim=”
for i in range(0,128):

if i%4 : trim+=’0,’
else: trim+=’1,’

server.setParameter("trimCh1", trim)

if __name__ == "__main__":
try:

host = sys.argv[1]
except IndexError:

host = "localhost"

try:
port = int(sys.argv[2])

except IndexError:
port = 10000

main(host, port)

46

Alibava GUI

Example 14. testSoap.py: an example of use

#!/usr/bin/env python
"""
Example of a soap client for alibava
"""
import sys
from alibavaSOAP import soapClient, Status

def main(host="localhost", port=10000):
connect to the server
server = soapClient(host, port)

Get the current status and print it
S = server.getStatus()
print S

Stop the run
R = server.stopRun()

Start a pedestal run with 1000 events
R = server.startPedestalRun(1000)

Start a Laser Run. Set the parameters of the
histogram axis
R = server.startLaserRun(1000, nbin=32, xmin=-512, xmax=512)
for hst in R:

print hst

Set the name of the data file and start a Source Run
server.setDataFile("alibava_data.dat")
R= server.startSourceRun(1000, nbin=32)
for hst in R:

print hst

if __name__ == "__main__":
try:

host = sys.argv[1]
except IndexError:

host = "localhost"

try:
port = int(sys.argv[2])

except IndexError:
port = 10000

main(host, port)

47

Alibava GUI

C++ example
The alibava package provides libraries for communicating with alibava-gui. The
test folder of the distribution contains an example, which also shown in Example 15.
Look at the given Makefile to see which are the requered includes and libraries. The
example shown here also uses the Histogram class whose implementation can also
be found in the test folder of the distribution.

Example 15. C++ soap client

#include <iostream>
#include <alibavaClient.h>

int main(int argc, char **argv)
{

const char *uri = "http://localhost:10000";
Alibava client;

if (argv[1])
uri = argv[1];

client.connect(uri);

ns1__Status status;
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;

client.startPedestalRun(5000, false);
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;

client.startLaserRun(5000, false);
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;

client.setParameter("fileFormat", "hdf5");
client.setDataFile("/tmp/data_file.dat");
client.startSourceRun(10000, false);
client.getStatus(status);
std::cout << "Status:" << std::endl;
std::cout << status << std::endl;
client.get_histogram(0)->Print(std::cout);

return 0;
}

48

Alibava GUI

Monitoring Alibava runs from abroad
The SOAP server also provides a web service where you can monitor the current
status of your run. The interface is really simple. The addres you have to give to the
browser is

http://address_of_your_computer:nnnn

where nnn is the port you have given to the SOAP server (10000 by default). You may
need to enable that port in order to do that from another computer. Figure 26 shows
an exmple of what the server will provide. It will, essentially, be the histograms that
are shown at the main window of the alibava-gui application.

Figure 26. Web server

A. Parameters of the Beetle chip
This appendix lists the parameters of the Beetle chip as described in the original work
by S. Löchner and M. Schmelling (The Beetle Reference Manual, LHCb-2005-105).

Table A-1. Beetle parameters and default values

Name Range Step Nominal Reg.
content

Description

Itp 0-2 mA 7.8 µA 0 µA 0x00 test pulse
bias current

Ipre 0-2 mA 7.8 µA 600 µA 0x4C preamplifier
bias current

49

Alibava GUI

Name Range Step Nominal Reg.
content

Description

Isha 0-2 mA 7.8 µA 80 µA 0x0A shaper bias
current

Ibuf 0-2 mA 7.8 µA 80 µA 0x0A front-end
buffer bias
current

Vfp 0-2.5 V 9.8 mV 0 mV 0x00 preamplifier
feedback
voltage

Vfs 0-2.5 V 9.8 mV 0 mV 0x00 shaper
feedback
voltage

Icomp 0-2 mA 7.8 µA 40 µA 0x05 comparator
bias current

Ithdelta 0-2 mA 7.8 µA -- -- current
defining
incremental
comparator
threshold

Ithmain 0-2 mA 7.8 µA -- -- current
defining
common
comparator
threshold

Vrc 0-1.25 V 4.9 mV 0 mV 0x00 comparator
RC time
constant

Ipipe 0-2 mA 7.8 µA 100 µA 0x0D pipeamp
bias current

Vd 0-2.5 V 9.8 mV 1275 mV 0x82 pipeamp
reset
potential

Vdcl 0-2.5 V 9.8 mV 1030 mV 0x69 pipeamp
reference
voltage

Ivoltbuf 0-2 mA 7.8 µA 160 µA 0x14 pipeamp
buffer bias
current

Isf 0-2 mA 7.8 µA 200 µA 0x1A multiplexer
buffer bias
current

Icurrbuf 0-2 mA 7.8 µA 800 µA 0x66 output
buffer bias
current

Latency 10-160 -- 160 0xA0 trigger
latency

ROCtrl -- -- cf. table C.11 readout
control

50

Alibava GUI

Name Range Step Nominal Reg.
content

Description

RclkDiv 0-255 -- 0 0x00 ratio
between
Rclk and
Sclk

CompCtrl -- -- See Table A-2 comparator
control

CompChTh 0-31 -- -- -- comparator
channel
threshold
shift register
implemen-
tation and
Beetle
revision Id.

CompMask -- -- 0 0x00 comparator
mask shift
register
implemen-
tation

TpSelect -- -- 0 0x00 test pulse
selection
shift register
implemen-
tation

SEUcounts 0-255 -- -- -- sum of
Single Event
Upsets

The following table describes the bits in the CompCtrl reagister

Table A-2. Bits in the CompCtrl register

Bit Function Description

0 DisableCompLVDS 0: enable comparator
LVDS output ports 1:
disable comparator LVDS
output ports

1 CompPolarity 0: inverting 1:
non-inverting

2 PipelineMode 0: analogue readout 1:
binary readout

3 CompDisable 0: enable comparator 1:
disable comparator

4 CompMode 0: track mode 1: pulse
mode

5-7 not used --

51

Alibava GUI

B. Start-up guide: getting the motherboard out of the box...

Basic connections and initialization of the system
There are a number of very easy steps required to get the system ready. Please read
the Alibava GUImanual first to have the data acquisition software properly installed
and ready. Then, the daughter board should be connected to the motherboard, pro-
vide power to the later and connect it to the USB port of the computer.

Figure B-1 shows the main ALIBAVA system connections.

Figure B-1. Alibava system sketch with all the needed connections.

These are the steps that must be followed in order to initialize the system:

1. Connect the daughter board to the mother board (item 2 of Figure B-2) by
means of the flat cable (the IDC connectors have a defined position both in
the daughter board and the mother board).

2. Power on the system by means of connecting the AC/DC adapter to the moth-
erboard power connector (item 1 of Figure B-2). The red and the green LEDs of
the motherboard (item 8 of Figure B-2) are switched on.

3. Connect the USB cable to a USB port on the computer where the software is
installed and to the USB connector of the motherboard (item 6 of Figure B-2).

4. Push the reset button (item 9 of Figure B-2) of the motherboard to initialize the
system.

5. Launch the software following the software documentation. Now the hard-
ware has been synchronized with the software and the red LED of the mother-
board will be switched off (item 8 of Figure B-2).

At this point the system has been initialized correctly and it is ready for preparing
the required connections for the laser or the radioactive source runs.

52

Alibava GUI

The detector(s) of the daughter board must be powered on by means of an indepen-
dent power supply. The daughter board has a Lemo power connector (with a defined
position for connecting the power plug of the cable) dedicated for this supply.

Calibrations and pedestals acquisitions can be carried out at this point once the de-
tector(s) have been powered on.

Figure B-2. Connectors, switches and LEDs of the ALIBAVA motheboard.

Laser setup connections
In order to take laser acquisitions the motherboard has a trigger output which uses
the LEMO connector next to the USB connector (item 7 of Figure B-2) for exciting a
pulse generator which will drive the laser. The name of this output (TRIG OUT) is
printed on the motherboard next to the corresponding connector.

The input of the pulse generator must have a 50Ω termination and a coaxial cable of
50Ω must be used for this connection. The levels of this motherboard output are 3.3V
LVTTL/LVCMOS compatible.

Radioactive setup connections
For this setup the motherboard has three trigger inputs which use three LEMO con-
nectors (item 5 of Figure B-2). The name of each trigger input is printed on the moth-
erboard next to the corresponding connector.

53

Alibava GUI

The TRIG IN1 and TRIG IN2 trigger inputs are intended for signals coming from
a photomultiplier. They are terminated with a 50Ω resistor and the input range is
±5V (do not exceed this input range). Therefore a 50Ω coaxial cable should be used
for these inputs. These inputs are discriminated using a discrimination level. Look
the software documentation for configuring the discrimination threshold of each in-
put (Trigger Configuration). These inputs can be ORed or ANDed (coincidence) once
thay have been discriminated. Look the software documentation to carry out this
configuration (Trigger Configuration).

The TRIG PULSE IN input is intended for a digital current/voltage pulsed signal
(for instance a signal photomultiplier signal discriminated externally). It can accept
positive and negative pulses (NIM logic, CMOS logic and TTL logic). This input is
terminated with a 50Ω resistor and the input range is ±5V (±100mA). This input
has a positive threshold and a negative threshold in order to distinguish the input
signal levels (for example if a 3.3V LVCMOS logic is used, a valid value for the pos-
itive threshold could be 1000mV and -1000mV for the negative threshold). Look the
software documentation to configure these thresholds (Trigger configuration).

The selection between the trigger inputs can be carried out with the software as well
(Trigger Configuration).

Probing the Beetle ouput signals with an oscilloscope
There are two analogue outputs at the motherboard in order to probe the analogue
output signal of each Beetle chip before they are digitized. These output signals use
the two vertical LEMO connectors of the motherboard (item 3 of the Figure B-2).
These outputs must be connected to the 50Ω input of an oscilloscope. A 50Ω coaxial
cable must be used for these connections.

ADC input range modification
There are two rotary switches of three positions on the motherboard (item 4 of Figure
B-2) to modify the ADC input range for each Beetle chip. The position 2 corresponds
to an input range of ±512mV (with a resolution of 1 mV). The position 3 corresponds
to an input range of 1024mV (with a resolution of 1 mV) only for positive signals. The
position 1 corresponds to a input range of -1024mV (with a resolution of 1 mV) only
for negative signals.

C. Installing the software
Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005, 2006 Free Software
Foundation, Inc.

This file is free documentation; the Free Software Foundation gives unlimited per-
mission to copy, distribute and modify it.

Basic installation
Briefly, the shell commands ‘./configure; make; make install’ should configure, build,
and install this package. The following more-detailed instructions are generic; see the
‘README’ file for instructions specific to this package.

The ‘configure’ shell script attempts to guess correct values for various
system-dependent variables used during compilation. It uses those values to create
a ‘Makefile’ in each directory of the package. It may also create one or more ‘.h’
files containing system-dependent definitions. Finally, it creates a shell script

54

Alibava GUI

‘config.status’ that you can run in the future to recreate the current configuration,
and a file ‘config.log’ containing compiler output (useful mainly for debugging
‘configure’).

It can also use an optional file (typically called ‘config.cache’ and enabled with ‘--
cache-file=config.cache’ or simply ‘-C’) that saves the results of its tests to speed up
reconfiguring. Caching is disabled by default to prevent problems with accidental
use of stale cache files.

If you need to do unusual things to compile the package, please try to figure out
how ‘configure’ could check whether to do them, and mail diffs or instructions to the
address given in the ‘README’ so they can be considered for the next release. If you
are using the cache, and at some point ‘config.cache’ contains results you don’t want
to keep, you may remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create ‘configure’ by a program
called ‘autoconf’. You need ‘configure.ac’ if you want to change it or regenerate ‘con-
figure’ using a newer version of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type ‘./config-
ure’ to configure the package for your system.

Running ‘configure’ might take a while. While running, it prints some mes-
sages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with the package.

4. Type ‘make install’ to install the programs and any data files and documenta-
tion.

5. You can remove the program binaries and object files from the source code di-
rectory by typing ‘make clean’. To also remove the files that ‘configure’ created
(so you can compile the package for a different kind of computer), type ‘make
distclean’. There is also a ‘make maintainer-clean’ target, but that is intended
mainly for the package’s developers. If you use it, you may have to get all sorts
of other programs in order to regenerate files that came with the distribution.

Compilers and Options
Some systems require unusual options for compilation or linking that the ‘config-
ure’ script does not know about. Run ‘./configure --help’ for details on some of the
pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters by setting vari-
ables in the command line or in the environment. Here is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

*Note Defining Variables::, for more details.

Compiling For Multiple Architectures
You can compile the package for more than one kind of computer at the same time, by
placing the object files for each architecture in their own directory. To do this, you can
use GNU ‘make’. ‘cd’ to the directory where you want the object files and executables
to go and run the ‘configure’ script. ‘configure’ automatically checks for the source
code in the directory that ‘configure’ is in and in ‘..’.

55

Alibava GUI

With a non-GNU ‘make’, it is safer to compile the package for one architecture at
a time in the source code directory. After you have installed the package for one
architecture, use ‘make distclean’ before reconfiguring for another architecture.

Installation names
By default, ‘make install’ installs the package’s commands under ‘/usr/local/bin’,
include files under ‘/usr/local/include’, etc. You can specify an installation prefix
other than ‘/usr/local’ by giving ‘configure’ the option ‘--prefix=PREFIX’.

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you pass the option ‘--exec-prefix=PREFIX’ to
‘configure’, the package uses PREFIX as the prefix for installing programs and
libraries. Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like ‘--
bindir=DIR’ to specify different values for particular kinds of files. Run ‘configure
--help’ for a list of the directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an extra prefix
or suffix on their names by giving ‘configure’ the option ‘--program-prefix=PREFIX’
or ‘--program-suffix=SUFFIX’.

Optional Features
Some packages pay attention to ‘--enable-FEATURE’ options to ‘configure’, where
FEATURE indicates an optional part of the package. They may also pay attention to
‘--with-PACKAGE’ options, where PACKAGE is something like ‘gnu-as’ or ‘x’ (for
the X Window System). The ‘README’ should mention any ‘--enable-’ and ‘--with-’
options that the package recognizes.

For packages that use the X Window System, ‘configure’ can usually find the X in-
clude and library files automatically, but if it doesn’t, you can use the ‘configure’
options ‘--x-includes=DIR’ and ‘--x-libraries=DIR’ to specify their locations.

Specifying the System Type
There may be some features ‘configure’ cannot figure out automatically, but needs
to determine by the type of machine the package will run on. Usually, assuming the
package is built to be run on the _same_ architectures, ‘configure’ can figure that
out, but if it prints a message saying it cannot guess the machine type, give it the
‘--build=TYPE’ option. TYPE can either be a short name for the system type, such as
‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM

where SYSTEM can have one of these forms:

OS KERNEL-OS

See the file ‘config.sub’ for the possible values of each field. If ‘config.sub’ isn’t in-
cluded in this package, then this package doesn’t need to know the machine type.

If you are _building_ compiler tools for cross-compiling, you should use the option
‘--target=TYPE’ to select the type of system they will produce code for.

If you want to _use_ a cross compiler, that generates code for a platform different
from the build platform, you should specify the "host" platform (i.e., that on which
the generated programs will eventually be run) with ‘--host=TYPE’.

56

Alibava GUI

Sharing Defaults
If you want to set default values for ‘configure’ scripts to share, you can create a
site shell script called ‘config.site’ that gives default values for variables like ‘CC’,
‘cache_file’, and ‘prefix’. ‘configure’ looks for ‘PREFIX/share/config.site’ if it exists,
then ‘PREFIX/etc/config.site’ if it exists. Or, you can set the ‘CONFIG_SITE’ environ-
ment variable to the location of the site script. A warning: not all ‘configure’ scripts
look for a site script.

Defining Variables
Variables not defined in a site shell script can be set in the environment passed to
‘configure’. However, some packages may run configure again during the build, and
the customized values of these variables may be lost. In order to avoid this prob-
lem, you should set them in the ‘configure’ command line, using ‘VAR=value’. For
example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is overridden in the
site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to an Auto-
conf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure CONFIG_SHELL=/bin/bash

‘configure’ Invocation
‘configure’ recognizes the following options to control how it operates.

‘--help’

‘-h’

Print a summary of the options to ‘configure’, and exit.

‘--version’

‘-V’

Print the version of Autoconf used to generate the ‘configure’ script, and exit.

‘--cache-file=FILE’

Enable the cache: use and save the results of the tests in FILE, traditionally ‘con-
fig.cache’. FILE defaults to ‘/dev/null’ to disable caching.

‘--config-cache’

‘-C’

Alias for ‘--cache-file=config.cache’.

‘--quiet’

‘--silent’

‘-q’

Do not print messages saying which checks are being made. To suppress all normal
output, redirect it to ‘/dev/null’ (any error messages will still be shown).

‘--srcdir=DIR’

Look for the package’s source code in directory DIR. Usually ‘configure’ can deter-
mine that directory automatically.

‘configure’ also accepts some other, not widely useful, options. Run ‘configure --help’
for more details.

57

Alibava GUI

Notes
1. Robert A. van Engelen and Kyle Gallivan, The gSOAP Toolkit for Web Services

and Peer-To-Peer Computing Networks, in the proceedings of the 2nd IEEE In-
ternational Symposium on Cluster Computing and the Grid (CCGrid2002), pages
128-135, May 21-24, 2002, Berlin, Germany.

2. http://sourceforge.net/projects/pywebsvcs/files/SOAP.py

58

	Table of Contents
	Introduction.
	What is alibavagui?

	Starting alibava
	Setting up the environment
	Old alibavagui versions

	How to launch the program

	Taking data
	Calibration run
	Laser Synchronization
	RS, Laser and Pedestal run modes

	Configuring alibava
	DAQ configuration
	Beetle configuration
	Beetle Comparator configuration
	External Trigger configuration
	Analysis configuration
	Laser config
	Plugin configuration
	Pedestals
	Calibration of the individual channel corrections to the comparator threshold

	Monitoring the data
	Changing histogram attributes and histogram printing

	Plugins for alibavagui
	The Plugin object
	Plugin Examples
	C++ example
	Python example

	Hacking the alibavagui code
	USB communication objects
	The DAQ objects
	The DAQ loop
	The configuration objects

	Data analysis.
	The Alibava Data Format
	Binary Data format
	The HDF5 data format

	Analysing the data
	The DataFileRoot class

	SOAP: Communicating with alibavagui
	SOAP examples
	Python example
	C++ example

	Monitoring Alibava runs from abroad

	A. Parameters of the Beetle chip
	B. Startup guide: getting the motherboard out of the box...
	Basic connections and initialization of the system
	Laser setup connections
	Radioactive setup connections
	Probing the Beetle ouput signals with an oscilloscope
	ADC input range modification

	C. Installing the software
	Basic installation
	Compilers and Options
	Compiling For Multiple Architectures
	Installation names
	Optional Features
	Specifying the System Type
	Sharing Defaults
	Defining Variables
	`configure' Invocation

