
Alibava
Carlos Lacasta

IFIC

Valencia

This is version 1.0 of the alibava-gui documentation

Use alibava-gui to control the ALIBAVA card

Table of Contents
Introduction. ...3
Starting alibava ..4
Taking data..6
Configuring alibava...7
Monitoring the data...11
Plugins for alibava-gui ...14
Hacking the alibava-gui code...20
Data analysis...23
A. Installing the software...29

Introduction.
alibava-gui is a graphical user interface that controls the ALIBAVA card. It is
able to configure the device, receive the data that the card sends via the USB
bus and store it in a file for further analysis. alibava-gui also monitors the data
while in acquisition mode so that the user can detect problems or just find the
proper parameters to run the system in an optimal way.

What is alibava-gui?
The alibava firmware provides 5 run modes

• Pedestals: makes a pedestal run

• Calibration: makes a calibration run injecting calibration pulses to the Beetle
chips

• Laser synchronization: scans the delay between the laser pulse and the acqui-
sition

• Laser: makes a laser run

• Source: makes a run in which the acquisition is triggered by signals above the
threshold in the input connectors

Figure 1 shows the main window

3

Alibava

Figure 1. Alibava main window

As one can see, the run types are selected on the right hand side of the window.
Right by the run type name there are buttons that, when clicked, will open a
dialog window to configure the run parameters. All the settings can be stored
in a configuration file by clicking save in the File menu. One can load different
configurations clicking on Open in the File menu. There are more configuration
settings that can be set by clicking on the different items of the Settings menu.

In the middle of the window there is a collection of tabs that will allow to monitor
the data during the data acquisition and on some of the tabs one can find buttons
that will refine the information displayed on the histograms.

alibava-gui also provides the possibility to load user defined plugins that will
allow to perform non-standard actions at different stages of the acquisition pro-
cess. Those plugins can be written both in C++, as shared libraries, or in Python,
as normal Python scripts. However, the plugin is not active by default. In order to
activate or deactivate it one needs to toggle the state of the button named Plugin
in the main window (See Figure 1).

4

Alibava

Starting alibava

Setting up the environment
alibava-gui assumes that your computer has the package udev. When installing
alibava-gui as a super user, a new group will be created named alibava. Also a
new udev rule will be added granting read/write permissions to the members of
that group. In order to grant any user with read/write permissions on the USB
bus you will have to make him/her a member of the alibava group. This must be
made as super user by typing the following

/usr/sbin/usermod -G alibava {your user name}

For that to work the installation should be made as super user. If you installed
alibava-gui withour root privilegues, then you will have to create the alibava
group and install the udev rules manually as root by typing

/usr/sbin/groupadd -f alibava

followed by the execution the script install-udev.sh. The script can be found on
the top folder of the distribution bundle.

To check that the installation has been done properly, plug in an Alibava card on
your USB hub and check that there is a file called /dev/alibava0. If this is so
the udev rules are properly installed and the members of the alibava group will
be able to read from and write to the device. Also, alibava-gui will automatically
detect in which port the Alibava card is connected. If alibava-gui is not able to
figure out that, it will quit unless you force the program to try to open another
device at the command line (see the Section called How to launch the program).

Old alibava-gui versions
In alibava-gui version older than 0.1.6-3 the program was not able to detect the
Alibava card and no udev rules were provided. In that case one was forced to
do things manually. In order to allow alibava-gui to read from and write to the
device there were a number of steps to follow which are explained below.

When the Alibava card is plugged in the computer, the driver decides which port
to use and alibava-gui did not have any means of discovering which one it was
in an automatic way.

After plugging in the card, one should type

dmesg

and look for the port that the driver has selected. The name is usually
/dev/ttyUSBn where n is 0 most of the times. Another problem encountered
quite often is that a normal user does not have read/write permissions. To solve
that you should type

change_priv n

where n is the number you found for /dev/ttyUSBn. If it is 0, you do not need to
specify it.

Warning
change_priv needs super user permissions. That means that you
should install alibava as super user. This will make the program
run with superuser attributes even if you launch it from within your
account.

5

Alibava

How to launch the program
Once this is done, one launches the alibava application by typing

alibava-gui [options] [config_file]

where config_file a file where all the settings have been saved. The options can
be

Table 1. alibava-gui options

--gui Shown the main GUI. This is the
default

--no-gui The program runs without a GUI

--emulator Simulates (Emulates) the data. Useful
to get familiar with the application

--nevts=n Set n as the maximum number of
events in the run

--sample=n Number of events to acquire in the
motherboard before transmitting the
data to the PC

--dev=/dev/ttyUSBn Set /dev/ttyUSBn as the port to
communicate with the motherboard in
case n is not the usual 0

Taking data
Taking data is easy. Just select the run type, set it up properly and click on the
DAQ button (the one named Start in Figure 1. Now, if you want to store the data
for further analysis, you have to press the Log Data button. A dialog window will
pop up where you can select the name of the output file. When starting the run
by clicking start the data will be dumped into the data file.

The following sections describe the different run types

Calibration run
Figure 2 shows the main parameters that can be set to define the calibration scan.

Figure 2. Setting properties of calibration scan

Start and end are the calibration charge at the beginning of the run and the last
value, respectively. The number of pulses tells how many different calibration
amplitudes are going to be generated, while the number of samples per point
specifies the number of events that will be acquired for each calibration pulse
amplitude.

6

Alibava

Laser Synchronization
The parameters of the delay scan for the laser synchronization are set by clicking
on the button on the right of the Laser Sync. radio button. A dialog box like the
one in Figure 3 will pop-up.

Figure 3. Laser Synchronization scan

The parameters from, to and step define the time interval that will be scanned
and the time step with which the laser delay will be increased. The number of
samples per point specifies the number of events that will be acquired for each
value of the laser delay.

RS, Laser and Pedestal run modes
Laser, source and pedestal runs are very similar modes. However some of the
parameters are very specific to the run mode.

For instance, RS mode needs the trigger to be properly configured. This can be
done as described in the Section called Trigger configuration.The laser run needs
the right delay between the laser strobe and the Beetle trigger, which can be set
as described in the Section called Laser config.

Configuring alibava
There are a number of ways in which you can configure alibava-gui. Once this
is done, one can always save that configuration. To save the current configura-
tion click on the Save or Save As items on the File menu of the main window.
Saved configurations can be loaded afterwards either by given the configuration
file path when starting alibava-gui or by choosing a configuration file through
the Open item in the File menu. Most of the configuration parameters can be ac-
cessed through the Settings menu as shown in Figure 4. Each of the menu items
will allow to configure different aspects of the alibava-gui behavior.

7

Alibava

Figure 4. Settings accessible through the Settings item in the main window
menu bar

DAQ configuration
The DAQ has a number of parameters:

• sample size: this is the number of events stored in the mother board memory
before sending them to the PC. This is only used in Pedestal, Laser and Source
modes

• number of events: maximum number of events. When then number of events
acquired equals this value the run stops

• Delay: if no data arrives after this delay, alibava-gui will believe there is a com-
munication problem

• Monitor channel: This is the channel whose characteristics curve will be shown
in the monitor window

All those parameters can be set by clicking on the DAQ item of the Settings menu
as show in Figure 5

8

Alibava

Figure 5. DAQ configuration window

Beetle configuration
The Beetle parameters are set by clicking on the Beetle item of the Settings menu
as show in Figure 6

Figure 6. Beetle configuration

Trigger configuration
The trigger for the Source run can be configured by clicking the Trigger item in
the Settings menu or the Trigger button by the RS run radio button. The dialog is
show in Figure 7

9

Alibava

Figure 7. Trigger configuration

Units are in mV.

Analysis configuration
The data is monitored while acquiring data and this is displayed in a number of
histograms. The parameters defining how to find clusters, etc. are displayed in
the analysis configuration window shown in Figure 8

Figure 8. Analysis configuration

Laser config
The only parameter of the Laser run is the delay (in ns) that can be wet in the
Laser item of the Settings menu or in the text entry by the Laser radio button.

Figure 9. Laser config

Units are in nano seconds

Plugin configuration
The plugin configuration dialog box appears in Figure 10.

10

Alibava

Figure 10. Plugin configuration dialog

There you can specify the plugin language, which can be either C++ or Python,
a folder to add to the search path, the name of the library or Python module to
load and the function to call. The Find Symbols button will open another win-
dow with a list of all the callable functions in the plugin. Select one and click
OK. Otherwise you will have to type the function (or hook) name. Also note that
when clicking on Browse for the Library, both the path and the library file name
will be filled. alibava-gui will also select the language based on very simple
assumptions.

Pedestals
alibava-gui can compute pedestals on-line either by making a pedestal run at
the very beginning or estimating the pedestal and noise while taking data. How-
ever, for some run types pedestal calculation makes not sense. This is the case
of the calibration, laser synchronization and laser since, a priori, some channels
will always have the same amplitude. Nevertheless, we would like to see the real
pedestals subtracted on th emonitoring histograms. To solve this we can either
make a pedestal run or load a pedestal file via the Load Pedestals item in the
Settings menu. Likewise, we can always save on a separate file a set of pedestals
we are proud of via the Save Pedestals item in the Settings menu.

The format of that pedestal file is:

• each line corresponds to one channel with line zero for channel 0

• each line contains the pedestal value, followed by a white space-like character
(space or tab) and then the noise value

Monitoring the data
As shown in Figure 1 there is a set of tabs in the main window that show a number
of quantities relevant to the acquisition.

11

Alibava

Figure 11. Signal histogram

Figure 11 shows the spectrum. However, do not expect to find here a landau
when acquiring in Source mode, since we plot here the signals sampled all along
the pulse shape. You can choose to see all the spectrum from all the chips or
from individual chips by clicking in the appropriate radio button on top of the
histogram. If you want to see the average value of the signal as a function of the
TDC time registered, click on the Time profile button and you will see the average
wave form of the signal pulse as shown in Figure 12.

Figure 12. Signal histogram

If you are debugging the system and make changes you can click on Reset his-
togram and the histogram contents will be cleared so that you can see the effect
of your tweaking.

Figure 13. Event display

Figure 13 shows the contents (in ADC units) of each channel for a given event.
You can choose to see the raw data, without pedestal and common mode correc-
tions or the digested data by clicking on the proper button on top of the histogram.

12

Alibava

Figure 14. Noise and common mode tracer

Figure 14 shows the average noise and the common mode (in ADC units) of both
chips. Note that the noise here and in the pedestals tab are not computed in the
same way and the value shown here is slightly higher than there. In the pedestal
tab the noise value is show per channel and is the RMS of the pedestal distribu-
tion. Here we show the RMS of the ADC values of the channels without signal.

Changing histogram attributes and histogram printing
One can change the histogram attributes by clicking on top of it with the right
mouse button. A pop-up menu will appear as shown in Figure 15 .

Figure 15. Histogram menu

Clicking on the print item will let you save the histogram as a picture. Clicking
on colors will allow you to change the background and foreground colors of the
axis, the canvas and the histogram itself. You can also change the position of the
axis, change to log scale, draw filled histograms or show the histogram statistics
by activating the corresponding radio buttons.

You can also change the range of the histogram axis to zoom a given region. This
is done by selecting it with the left button of the mouse while pressing:

• CTRL for the X axis or

13

Alibava

• SHIFT for the Y axis

Plugins for alibava-gui

The Plugin object
As already mentioned, alibava-gui allows to load plugins that will enable the
end-user to perform non-standard actions at very specific points of the data ac-
quisition process. These stages are:

1. New file: every time we open a new file to store the data

2. Start of run: at the beginning of the run

3. New event: at the beggining of each event.

4. End of event: right before the event is going to be dumped to the output
file. This gives the oportunity to filter the events or, event, change the data
format (for instance filtering out unwanted channels)

5. End of run

Figure 17 shows the places, during the acquisition loop, in which the plugin
methods are called.

The plugins can be written in C++, as shared libraries, or as Python scripts. Ex-
amples can be found in the test folder of the distribution.

In C++ the plugins are nothing but a class that derives from Plugin in Plugin.h,
which is shown in Example 1. The test folder in the distribution bundle has an
example of a C++ plugin together with a make file (UserMakefile). The example
is described in Example 3. In the make files use the pkg-config program to get
the compilation flags and the path to to the alibava include files.

Example 1. Plugin C++ class definition

class Plugin {
Plugin();
virtual ~Plugin();
enum BlockType = {NewFile=0, StartOfRun, DataBlock, CheckPoint,

EndOfRun};
virtual string new_file();
virtual int start_of_run(int run_type, int nevts, int sample_size);
virtual bool new_event(int ievt);
virtual string new_point();
virtual string end_of_run();
virtual string filter_event(const EventData & data);

}

The main methods in a Plugin class are:

string new_file();

This method is called at the beginning of a file. This will only happen when
data logging is activated. The method returns a string that will be included
in the NewFile data block of the data file. See the Section called Data format
to understand the data blocks.

int start_of_run(int run_type, int nevts, int sample_size);

This method is called at the beginning of each run. The parameters are:

• run_type: this tells you the current run type (See AlibavaGUI::Runtype in
AlibavaGUI.h for the possible values)

• nevts: the number of events for the current run as set by the user on the
alibava-gui GUI.

14

Alibava

• sample_size: this is the number or events that alibava will acquire in each
acquisition

start_of_run returns an integer value that is the actual number of events
that alibava-gui will consider. If the method is not superseeded by your plu-
gin it will just return nevts. The idea behind this bizarre idea is to allow the
user to perform scans on different parameters and redefine this way the total
number of events from the number of scan poitns and the number of events
per point.

string end_of_run();

This is called at the end of each run. It can return a buffer with some user
data that will be included in the EndOfRun data block of the data file. See
the Section called Data format to understand the data blocks.

bool new_event(int evt);

This method is called at the beggining of each event. The argument evt is the
current event number.

It returns a boolean which is

• true: when we want to right a CheckPoint block in the data before the
current event. The actual content of the CheckPoint block will be given by
the new_point method which will only be called when new_event returns
true.

• false: new_point will not be called for this event.

The idea behind this is first, to have a handle right at the beginning of an
event and, second, to decide whether we want to add extra information be-
fore this event on the data file. This extra information could be the time of
the day or, more interesting, the values of the parameters of a scan when a
new scan point is going to start.

string new_point();

This method is called only when new_event has returned true as explained
above. It returns a string that will be included in a CheckPoint data block
right before the current event DataBlock (See the Section called Data format
to understand the data blocks). This is usefull to store in the file the parame-
ters of a user-defined scan or some information that you would like to write
periodically, like humidity (if you can measure it), detector current, etc.

Warning
If you use AsciiRoot (see the Section called The Ascii-
Root class), to access the CheckPoint data you will have
to write your own class deriving from AsciiRoot imple-
menting the method check_point.

string filter_event(const EventData & data);

This is called at the end of an event. The idea is that the user can change
the information and the format of a normal DataBlock (see the Section called
Data format). I good example could be a laser scan in which you would only
be interested in very few channels. The method returns a string which, if not
empty, will be writen in the DataBlock instead of the normal data.

Warning
If you change the BlockData format then you will have
to use a class which derives from AsciiRoot (see the
Section called The AsciiRoot class) and implements the
new_data_block method. Also the pedestal and noise
values sotred int he data file will loose their meaning and
will be unsusable.

In Python the plugin class is as shown in Example 2.
15

Alibava

Example 2. Definition of a Python plugin class

class Plugin (extendsobject) :
def new_file(self) :
def start_of_run(self, run_type, nevts, sample_size) :
def new_event(self, ievt) :
def new_point(self) :
def end_of_run(self) :
def filter_event(self, time, temperature, value, data) :

The parameters, return values and names of the Python methods are like in C++.
The only different method is filter_event since it has a different signature.

string filter_event(self, time, temperature, value, data);

The parameters of this method are:

• time: an integer with the value of the Alibava TDC

• temperature: an integer with the value of the temperature measured by
Alibava

• value: the value of the scan variable in the predefined scans (delay in laser
synchronization and injected charge in calibration)

• data: an array of 256 integers with the ADC values

Note that the values of time, temperature and value are not decoded and
therefore their meaning is as described in Table 4. See the description of the
C++ method for more information and warnings.

Plugin Examples
Plugin examples can be found in the folder test on the distribution bundle.

C++ example
In order to make a useful plugin, you have to create your own class implementing
some of the methods in Plugin. An example of such a class implementing a user
defined scan is shown in Example 3.

Example 3. A C++ plugin to perform a scan

/*
* test_plugin.cc
*
* This is an example of a plugin writen in C++.
* Look at the documentation in PLugin.h
*
* Created on: Jul 24, 2009
* Author: lacasta
*/

#include <iostream>
#include <sstream>
#include <Plugin.h>
#include "NewPoint.h"

/**
* This is an implementation of the Plugin class.
* It is a simple example that will make a scan.
* We may use the new_file method to store the parameters
* of the scan, new_event to determine when a new
* point is the scan is needed and new_point to store
* the actual values of
* the scan variables.

16

Alibava

*/
class MyPlugin : public Plugin
{

private:
int npoints; // N. of pts we want for the scan
int nevt_per_point; // N. of pts acquired in each point
int run_type; // type of run
int current_event; // current event number
EventCntr handler; // The object that decides when

// to change to the next point

public:
// Constructor with default values
MyPlugin() :

npoints(50), nevt_per_point(1000), run_type(-1),
handler(nevt_per_point), current_event(0) {}

// destructor
~MyPlugin() {}

/**
* Declaration of Plugin methods to be implemented
*/
std::string new_file();
int start_of_run(int run_type, int nevts, int sample_size);
std::string end_of_run();
bool new_event(int evt);
std::string new_point();

};

std::string MyPlugin::new_file()
{

std::string rc("New file");
std::cout << "new_file" << std::endl;
return rc;

}

int MyPlugin::start_of_run(int runtype, int nevts, int sample_size)
{

run_type = runtype;
std::cout << "start_of_run " << nevts << " events. "

<< "Runtype " << run_type
<< std::endl;

if (sample_size > handler.value())
{

handler.value(sample_size);
nevt_per_point = sample_size;

}
handler.reset();
return npoints*nevt_per_point;

}

std::string MyPlugin::end_of_run()
{

std::string rc("end_of_run");
std::cout << "end_of_run" << std::endl;
return rc;

}

bool MyPlugin::new_event(int ievt)
{

current_event = ievt;
return handler(ievt);

17

Alibava

}

std::string MyPlugin::new_point()
{

std::ostringstream ostr;
ostr << "new point: " << current_event << std::endl;
std::cout << ostr.str();
return ostr.str();

}

/*
* This is the factory function or "hook" in terms of the
* Plugin dialog box where the instance of you Plugin
* implementation is created.
*/

extern "C"
{

Plugin *create_plugin()
{

MyPlugin *plugin = new MyPlugin();
return plugin;

}
}

In addition to that, we need a factory function that will create the class instance.
The name of that function should be specified in the Plugin dialog box when the
hook name is required. An example of such a factory function is shown at the
very end of Example 3. Note that the function is declared as extern "C". This is
important since otherwise alibava-gui will not be able to find it when the shared
library is loaded. See the complete example, together with the make file (User-
Makefile) in the test folder of the distributed software. In your make files use
the pkg-config program to get the compilation flags and the path to to the al-
ibava include files.

Python example
As already mentioned, plugins can also be written as Python scripts. An example
similar to the previous C++ plugin is shown in

Example 4. An example of a Python plugin

""" An example of an alibava plugin
This example implements a user defined scan

"""

import time
import inspect

#
Define some usefull constants
#
Block types
NewFile,StartOfRun, DataBlock, CheckPoint, EndOfRun = range(0,5)

Run types
Unknown,Calibration,LaserSync,Laser,RadSource,Pedestal,LastRType = range(0,7)

class MyPlugin(object):
""" This is an object that can be loaded by alibava to

be called at certain stages of the DAQ process.

"""

18

Alibava

def __init__(self):
""" Initialization
"""
self.current_point = 0
self.current_event = 0
self.npoints = 50
self.nevt_per_point = 1000
self.handler = EventCounter(self.nevt_per_point)
self.run_type = -1

def new_file(self):
""" This is called at the beginning of each file

It should return a string with information
that will be stored in the file header

"""
print "new_file"
return "Hola !!!"

def start_of_run(self, run_type, nevts, sample_size):
""" This is called at the beginning of each run.

It should return the total number of events
that we want to acquire. As an extra input we
have the size of the data chunk that Alibava
acquires each time we activate the acquisition.

Run types are predefined in the variables:
Unknown,Calibration,LaserSync,Laser,RadSource,Pedestal

"""
info_msg("Starting a new run")
self.handler.start()
self.run_type = run_type
write_msg("start_of_run %d events. Run type: %d"

%
(nevts, run_type))

write_msg("...sample size %d" % (sample_size))

self.handler.reset()
if sample_size > self.handler.nevts:

print "Changing handler.nevts"
self.handler.nevts = sample_size
print "...new value", self.handler.nevts
self.nevt_per_point = sample_size

if run_type!= RadSource and run_type!=Laser:
return nevts

else:
Here we return the number of events we really
want to acquire given that we need to scan npoints
with nevt_per_point events per point.
return self.npoints * self.nevt_per_point

def end_of_run(self):
""" Called at the end of a run
"""
write_msg("end_of_run")
return "end_of_run"

def new_event(self, ievt):
""" This is called at the beginning of each event.

Should return True if we want alibava to call
the method new_point.

The input parameter is the current event number
"""

19

Alibava

self.current_event = ievt
if self.handler.check(ievt):

return True
else:

return False

def move_axis(self):
""" A dummy function where we could, for instance,

move the axis that hole the laser or the source
"""
pass

def new_point(self):
""" Called every time that new_event returns True
"""
self.current_point += 1
self.move_axis()
print "new_point %d event %d" % (self.current_point,

self.current_event)
return "Current axis position is %d" % self.current_point

def create_plugin():
""" This is the ’hook’. This is the method called to

create an instance of the MyPlugin class
"""

write_msg("Loading %s" % __name__)
plugin = MyPlugin()
return plugin

Note that as in the case of C++ we also need here a factory function or hook to
create the instance of the Plugin and pass it to Alibava.

Hacking the alibava-gui code
alibava-gui is written in C++. The amount of classes and source files can be
a little bit confusing for a beginner that wants to know where and how should
a change, improvement or patch be applied. In order to facilitate that, a short
description of the code organization will be given here.

There three main groups of objects in alibava-gui. In the first group we have the
objects in charge of talking to the USB port of Alibava, we then have the objects
in charge of handling the configuration and, finally the objects in charge of the
data acquisition. The main object arbitrating all the interactions with Alibava is
AlibavaGUI, which also controls the graphical user interface (GUI) of alibava-gui

USB communication objects
The Alibava module can be read and configured via an USB port. alibava-gui
has decoupled the raw USB communication from the Alibava command gener-
ation and readout. This can be seen on Figure 16. The main class, AlibavaGUI,
has an object, Alibava, which is the responsible of generating the commands for
the hardware an of reading out the data. It does so with the help of yet another
object interface, USBport, which defines the commands to interact with the USB
port. The different implementations of an USBport object have to do with the
kernel driver one uses to access the USB data. There are, currently, three of those
incarnations of USBport which are USBd2xx, USBserial and USBFifo.

20

Alibava

Figure 16. USB communications

USBserial makes used of the usbserial driver in Linux. USBd2xx uses the FTDI
library provided by the USB chip vendor. Finally, USBFifo creates a memory Fifo
for the USB input from which the user reads. All the raw operations with the USB
device are delegated in a USBport object given at the instantiation. The default for
alibava-gui is USBFifo using USBserial.

The DAQ loop
The DAQ loop is sketched in Figure 17. There we can see the main players of
the acquisition loop. AlibavaGUI calls the open method which opens the device,
sends a reset command and configures the beetle and the trigger. Then, new_file
and start_of_run methods of the Plugin are called. At this stage the initializa-
tion is over and the program enters the acquisition loop by calling the acquire
method in AlibavaGUI. In Figure 17 we have illustrated a calibration run, but the
behaviour is the same for other run modes of alibava-gui.

21

Alibava

Figure 17. DAQ loop

The configuration objects
Most of the alibava-gui parameters can be configured. The values can be saved to
a configuration file or restored from a previously saved configuration file. Each
of the parts that can be configured store the data in a class that derives from Con-
figFile. Figure 18 shows all those classes. For each of them, there is a class (same
name with a GUI suffix) that allows to see, set and modifiy on dialog windows
the current values of the parameters.

22

Alibava

Figure 18. Configuration objects

Data analysis.

Data format
The data is stored in binary form. However the format of the data files is quite
simple and it is shown in Table 2. For the sizes we use in the tables:

uint32

An unsigned 32 bit integer

uint16

An unsigned 16 bit integer

int16

A signed 16 bit integer

int32

A signed 32 bit

char

An 8bit character (1 byte)

Table 2. Data Format

Data size and type Meaning

uint32 Time of start of run

23

Alibava

Data size and type Meaning
int32 Run type. The run type can have

various values: 1. Calibration run
2. Laser Sync.

3. Laser

4. Rad. source

5. Pedestal

uint32 Header length (header_length)

header_length * char Header data. The header data
contains some information that is
useful when analyzing the data. The
header is stored as an ASCII string
and the format is:• In the case of
calibration of laser sync:

• Vn.n|npts;from;to;step

• In the case of laser or rad. source:

• Vn.n|num_events;sample_size

256 * double (32 bit) Pedestals (ADC units)

256 * double (32 bit) Noise (ADC units)

Datablock Following the overall header of the
file describing the parameters of the
alibava run there are a number of
DataBlocks each containing specific
information. All the data blocks have
the same structure, which is
described in Table 4. The possible
DataBlocks are:• NewFile

• StartOfRun

• DataBlock

• CheckPoint

• EndOfRun

The file data has an overall header, containing the running parameters of Alibava
and then a series of data blocks. The data blocks have all the same format, which
is described in Table 3. The data itself is one of those data blocks and is the only
one which is always written by alibava-gui. The rest are only written when the
user activates a plugin and any of the methods returns a data buffer.

Table 3. Format of a data Block

Data size and type Meaning

24

Alibava

Data size and type Meaning
uint32: 0xcafennnn Header of the data block. nnnn is the

data block type. The different types
can be: 1. NewFile.

2. Start of Run

3. Data

4. Check Point

5. End of Run

uint32 The size in bytes of the block data

size * char The block data.

Only the Data block has a fixed format, given by Alibava. The format of the other
blocks depends on the plugin activated by the user. The format of the Data block
in show in Table 4

Table 4. Format of the Data block

Data size and type Meaning

0xcafe0002 The block data

522 The size of the block data

uint32 Time as read in the TDC. T =
100.0*(ipart + (fpart/65535.))
whereipart

(X & 0xFFFF0000)>>16

fpart

sign(ipart)*(X & 0xFFFF)

uint16 Coded Temperature (T = 0.12*X-39.8)

256 * uint16 The ADC values of the 256 channels

double (32 bit) An extra value that corresponds to the
scanned variable in the predefined
scans: Calibration (charge) and Laser
synchronization (delay)

An example on how to deal with the data can be found in AsciiRoot.cc in the
root_macros folder.

Analysing the data
Knowing the data format you can write your own program to analyze the data in
your preferred language. However, alibava provides a collection of root macros
(still evolving) to read the data files and produce histograms. The root macros are
in the root_macros folder of the alibava distribution. If you have ROOT already
installed installed during the alibava installation, you will find, at the end of the
installation process the ROOT libraries in INSTALL_DIR/lib/alibava/root. IN-
STALL_DIR is usually /usr/local unless you specify it differently as explained in
Appendix A.

If you are not planning to modify the source code of the root macros you can use
those libraries. To do so, you will need in your working directory a rootlogon.C
file that loads them when root is initialized from within that directory. It could
look like the one showed in Example 5

25

Alibava

Example 5. rootlogon.C for using precompiled ROOT libraries

//()
{

// Add INSTALL_DIR/lib/alibava/root in the ROOT macro path
const char *install_dir = "INSTALL_DIR/lib/alibava/root";
char line[1024];

sprintf(line,"%s:%s", gSystem->GetDynamicPath(), install_dir);
gSystem->SetDynamicPath(line);

sprintf(line,"%s:%s", gROOT->GetMacroPath(), install_dir);
gROOT->SetMacroPath(line);

// now load the things
std::cout << "=================================" << std::endl;
gROOT->LoadMacro("compile.C");
load_alibava_libs();
std::cout << "=================================" << std::endl;

// Add your own ROOT initialization stuff below

}

If you want to make modifications to the source of the ROOT macros then, to use
them, go to the root_macros folder and create there a rootlogon.C file that looks
like Example 6.

Example 6. rootlogon.C file

//()
{

std::cout << "=================================" << std::endl;
gROOT->LoadMacro("compile.C");
compile(false);
std::cout << "=================================" << std::endl;

gROOT->SetStyle("Plain");
gStyle->SetPalette(1);

}

This will load some of the macros that will analyze the data.

In any of the two cases, the best is to start executing a function that will do every-
thing for you

sin_preguntas(data_file, cal_file, polarity, dofit);

Example 7. The make-all-for-you function prototype

void sin_preguntas(AsciiRoot *A, const char* cal_file, const char
*ped_file, int polarity, bool dofit, int tcd0, int tdc1);

where the arguments have the following meaning:

26

Alibava

A

a pointer to a user supplied AsciiRoot (or descendant) object. Here one
should pass either a pointer to either a pure AsciiRoot class or to a user
defined "son/daughter" of AsciiRoot defining the virtual methods used to
decode the special data blocks. See the Section called The AsciiRoot class

data_file

The path of the data file to be analyzed.

cal_file

The path of a calibration file. It can be an Alibava data file produced during
a calibration run or an ASCII text file with as many lines as channels with
gain and offset in each line. If you do not have this file, set 0 here. The only
difference is that if the calibration file the histogram units will be in electrons.
Otherwise they will be in ADC units.

ped_file

compute pedestals or an ascii text file with as many lines as channels and
pedestal and noise for each channel. If no file is given, sin_preguntas will
use the data file to compute pedestals.

polarity

this is the expected polarity of the signal (or the bias voltage): -1 for negative
signals and +1 for positive signals.

dofit

this is a boolean that specifies whether the program should try to fit a landau
to the signal histogram. If true is given it will do the fit.

tdc0, tdc1

Define a time window around the peak of the pulse shape to produce the
signal histogram

The AsciiRoot class
In the root_macros folder you will find a number of example files to analyze the
data. They do not intend to be a standard but just examples. At least this is how
they were born, though they have been evolving and, as of today, they are too
complicated an example. However the AsciiRoot class can still serve as a good
tool to read the files and to access the current data to make your own analysis.

The AsciiRoot class definition is shown in Example 8. Only a few methods are
show here. For the complete definition of the class, please look in AsciiRoot.h.

Example 8. The AsciiRoot class definition

class AsciiRoot {
AsciiRoot(const char * data_file);
~AsciiRoot();
enum BlockType = {NewFile=0, StartOfRun, DataBlock, CheckPoint,

EndOfRun};
bool valid();
void open(const char * data_file);
void close();
void rewind();
int read_event();

// Plugin extra data Blocks
virtual void new_file(int size, const char * data);
virtual void start_of_run(int size, const char * data);
virtual void check_point(int size, const char * data);
virtual void new_data_block(int size, const char * data);
virtual void end_of_run(int size, const char * data);

27

Alibava

void set_data(int size, const unsigned short * data);
// Analysis methods

TH2 * compute_pedestals(int mxevts = -1, bool do_cmmd = true);
void compute_pedestals_fast(int mxevts = -1, double ped_weight = 0.01, double noise_weight = 0.001);
void load_pedestals(const char * file_name);
void save_pedestals(const char * file_name);
void load_gain(const char * file_name);

// Debugging methods
void spy_data(bool with_signal = false, int nevt = 1);
TH1 * show_pedestals();
TH1 * show_noise();

}

By default, AsciiRoot only reads the DataBlock which is the only that has a more
or less defined format. If the user has created other data blocks with a user-
defined plugin, then he/she will have to define a class which derives from Asci-
iRoot and implements the methods that receive the data from those extra blocks.
Those methods are explained below

AsciiRootconstchar *data_file

The constructor. data_file is the path of the data file.

void new_file(int size, const char * data);

This method is called whenever a NewFile block is found on the file. The
arguments are the size of the block data and the data itself (see Table 3).

void start_of_run(int size, const char * data);

This method is called when a StartOfRun block is found on the data file. The
arguments are the size of the block data and the data itself (see).

void check_point(int size, const char * data);

This method is called when a CheckPoint block is found in the data file. The
arguments are the size of the block data and the data itself (see Table 3).

void new_data_block(int size, const char * data);

This method is called when a DataBlock is found in the data file. The main
use of this method is to decode the event data when a Plugin::filter_event
method (see Example 1) has modified the default data format during the ac-
quisition. The arguments are the size of the block data and the data itself (see
Table 4). This method should call set_data in order to set the active channels
and their ADC values.

Warning
Note that when you change the default format in the Dat-
aBlock, the pedestal and noise values stored in the file
loose their meaning and you will have to recompute them
with compute_pedestals or compute_pedestals_fast

void end_of_run(int size, const char * data);

This method is called when an EndOfRun block is found in the data file. The
arguments are the size of the block data and the data itself (see Table 3).

void set_data(int size, const unsigned short * data);

This method should be used when the user has modified the DataBlock for-
mat. You should provide the number of channels (size) and an array with
the ADC values (data)

28

Alibava

void load_pedestals(const char * file_name);
void save_pedestals(const char * file_name);

load/save pedestals from/to a file. The file is a simple ASCII file, each line
containing the pedestal and noise values of a channel. Line i corresponds to
channel i.

void load_gain(const char * file_name);

Load the gain factors (ADC counts to electrons) of the channels. The input
file is an ASCII file, each line containing the channel number followed by the
gain value.

TH2 * compute_pedestals(int mxevts = -1, bool do_cmmd = true);

This method computes the pedestals in the usual way. What it does is to pro-
duce, for each channel, a histogram with all the ADC values and fit a gaus-
sian to the peak with the lowest mean. The pedestal and noise of that channel
will be the mean and the sigma of the gaussian fit. It returns a 2D histogram
showing the distribution of all the channels. The method parameters are:

• mxevts: number of events to use in the pedestal calculation. If negative,
then all the events in the file will be used.

• do_cmmd: if set to true, the algorithm will make common mode subtrac-
tion on an event by event basis.

void compute_pedestals_fast(int mxevts = -1, double ped_weight = 0.01, double noise_weight = 0.001);

This method computes the pedestals with a somewhat different algorithm
than compute_pedestals. It tries to follow any change of the pedestal and
the noise of the channels and updates their values. It is the method that
alibava-gui uses to monitor the data during the acquisition. For analysis
one should use compute_pedestals.

For more information take a look at AsciiRoot.h and the source code in Ascii-
Root.cc. In the test folder of the distribution bundle you will also find some ex-
amples.

A. Installing the software
Copyright (C) 1994, 1995, 1996, 1999, 2000, 2001, 2002, 2004, 2005, 2006 Free Soft-
ware Foundation, Inc.

This file is free documentation; the Free Software Foundation gives unlimited
permission to copy, distribute and modify it.

Basic installation
Briefly, the shell commands ‘./configure; make; make install’ should configure,
build, and install this package. The following more-detailed instructions are
generic; see the ‘README’ file for instructions specific to this package.

The ‘configure’ shell script attempts to guess correct values for various system-
dependent variables used during compilation. It uses those values to create a
‘Makefile’ in each directory of the package. It may also create one or more ‘.h’ files
containing system-dependent definitions. Finally, it creates a shell script ‘con-
fig.status’ that you can run in the future to recreate the current configuration,
and a file ‘config.log’ containing compiler output (useful mainly for debugging
‘configure’).

It can also use an optional file (typically called ‘config.cache’ and enabled with ‘-
-cache-file=config.cache’ or simply ‘-C’) that saves the results of its tests to speed
up reconfiguring. Caching is disabled by default to prevent problems with acci-
dental use of stale cache files.

29

Alibava

If you need to do unusual things to compile the package, please try to figure out
how ‘configure’ could check whether to do them, and mail diffs or instructions to
the address given in the ‘README’ so they can be considered for the next release.
If you are using the cache, and at some point ‘config.cache’ contains results you
don’t want to keep, you may remove or edit it.

The file ‘configure.ac’ (or ‘configure.in’) is used to create ‘configure’ by a program
called ‘autoconf’. You need ‘configure.ac’ if you want to change it or regenerate
‘configure’ using a newer version of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type ‘./con-
figure’ to configure the package for your system.

Running ‘configure’ might take a while. While running, it prints some mes-
sages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with the pack-
age.

4. Type ‘make install’ to install the programs and any data files and docu-
mentation.

5. You can remove the program binaries and object files from the source code
directory by typing ‘make clean’. To also remove the files that ‘configure’
created (so you can compile the package for a different kind of computer),
type ‘make distclean’. There is also a ‘make maintainer-clean’ target, but
that is intended mainly for the package’s developers. If you use it, you
may have to get all sorts of other programs in order to regenerate files that
came with the distribution.

Compilers and Options
Some systems require unusual options for compilation or linking that the ‘con-
figure’ script does not know about. Run ‘./configure --help’ for details on some
of the pertinent environment variables.

You can give ‘configure’ initial values for configuration parameters by setting
variables in the command line or in the environment. Here is an example:

./configure CC=c99 CFLAGS=-g LIBS=-lposix

*Note Defining Variables::, for more details.

Compiling For Multiple Architectures
You can compile the package for more than one kind of computer at the same
time, by placing the object files for each architecture in their own directory. To do
this, you can use GNU ‘make’. ‘cd’ to the directory where you want the object files
and executables to go and run the ‘configure’ script. ‘configure’ automatically
checks for the source code in the directory that ‘configure’ is in and in ‘..’.

With a non-GNU ‘make’, it is safer to compile the package for one architecture at
a time in the source code directory. After you have installed the package for one
architecture, use ‘make distclean’ before reconfiguring for another architecture.

Installation names
By default, ‘make install’ installs the package’s commands under
‘/usr/local/bin’, include files under ‘/usr/local/include’, etc. You can specify
an installation prefix other than ‘/usr/local’ by giving ‘configure’ the option
‘--prefix=PREFIX’.

30

Alibava

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you pass the option ‘--exec-prefix=PREFIX’ to
‘configure’, the package uses PREFIX as the prefix for installing programs and
libraries. Documentation and other data files still use the regular prefix.

In addition, if you use an unusual directory layout you can give options like ‘--
bindir=DIR’ to specify different values for particular kinds of files. Run ‘configure
--help’ for a list of the directories you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed with an ex-
tra prefix or suffix on their names by giving ‘configure’ the option ‘--program-
prefix=PREFIX’ or ‘--program-suffix=SUFFIX’.

Optional Features
Some packages pay attention to ‘--enable-FEATURE’ options to ‘configure’,
where FEATURE indicates an optional part of the package. They may also pay
attention to ‘--with-PACKAGE’ options, where PACKAGE is something like
‘gnu-as’ or ‘x’ (for the X Window System). The ‘README’ should mention any
‘--enable-’ and ‘--with-’ options that the package recognizes.

For packages that use the X Window System, ‘configure’ can usually find the X in-
clude and library files automatically, but if it doesn’t, you can use the ‘configure’
options ‘--x-includes=DIR’ and ‘--x-libraries=DIR’ to specify their locations.

Specifying the System Type
There may be some features ‘configure’ cannot figure out automatically, but needs
to determine by the type of machine the package will run on. Usually, assuming
the package is built to be run on the _same_ architectures, ‘configure’ can figure
that out, but if it prints a message saying it cannot guess the machine type, give it
the ‘--build=TYPE’ option. TYPE can either be a short name for the system type,
such as ‘sun4’, or a canonical name which has the form:

CPU-COMPANY-SYSTEM

where SYSTEM can have one of these forms:

OS KERNEL-OS

See the file ‘config.sub’ for the possible values of each field. If ‘config.sub’ isn’t
included in this package, then this package doesn’t need to know the machine
type.

If you are _building_ compiler tools for cross-compiling, you should use the op-
tion ‘--target=TYPE’ to select the type of system they will produce code for.

If you want to _use_ a cross compiler, that generates code for a platform differ-
ent from the build platform, you should specify the "host" platform (i.e., that on
which the generated programs will eventually be run) with ‘--host=TYPE’.

Sharing Defaults
If you want to set default values for ‘configure’ scripts to share, you can create a
site shell script called ‘config.site’ that gives default values for variables like ‘CC’,
‘cache_file’, and ‘prefix’. ‘configure’ looks for ‘PREFIX/share/config.site’ if it ex-
ists, then ‘PREFIX/etc/config.site’ if it exists. Or, you can set the ‘CONFIG_SITE’
environment variable to the location of the site script. A warning: not all ‘config-
ure’ scripts look for a site script.

Defining Variables
Variables not defined in a site shell script can be set in the environment passed
to ‘configure’. However, some packages may run configure again during the

31

Alibava

build, and the customized values of these variables may be lost. In order to
avoid this problem, you should set them in the ‘configure’ command line, using
‘VAR=value’. For example:

./configure CC=/usr/local2/bin/gcc

causes the specified ‘gcc’ to be used as the C compiler (unless it is overridden in
the site shell script).

Unfortunately, this technique does not work for ‘CONFIG_SHELL’ due to an Au-
toconf bug. Until the bug is fixed you can use this workaround:

CONFIG_SHELL=/bin/bash /bin/bash ./configure
CONFIG_SHELL=/bin/bash

‘configure’ Invocation
‘configure’ recognizes the following options to control how it operates.

‘--help’

‘-h’

Print a summary of the options to ‘configure’, and exit.

‘--version’

‘-V’

Print the version of Autoconf used to generate the ‘configure’ script, and exit.

‘--cache-file=FILE’

Enable the cache: use and save the results of the tests in FILE, traditionally ‘con-
fig.cache’. FILE defaults to ‘/dev/null’ to disable caching.

‘--config-cache’

‘-C’

Alias for ‘--cache-file=config.cache’.

‘--quiet’

‘--silent’

‘-q’

Do not print messages saying which checks are being made. To suppress all nor-
mal output, redirect it to ‘/dev/null’ (any error messages will still be shown).

‘--srcdir=DIR’

Look for the package’s source code in directory DIR. Usually ‘configure’ can de-
termine that directory automatically.

‘configure’ also accepts some other, not widely useful, options. Run ‘configure
--help’ for more details.

32

	Table of Contents
	Introduction.
	What is alibavagui?

	Starting alibava
	Setting up the environment
	Old alibavagui versions

	How to launch the program

	Taking data
	Calibration run
	Laser Synchronization
	RS, Laser and Pedestal run modes

	Configuring alibava
	DAQ configuration
	Beetle configuration
	Trigger configuration
	Analysis configuration
	Laser config
	Plugin configuration
	Pedestals

	Monitoring the data
	Changing histogram attributes and histogram printing

	Plugins for alibavagui
	The Plugin object
	Plugin Examples
	C++ example
	Python example

	Hacking the alibavagui code
	USB communication objects
	The DAQ loop
	The configuration objects

	Data analysis.
	Data format
	Analysing the data
	The AsciiRoot class

	A. Installing the software
	Basic installation
	Compilers and Options
	Compiling For Multiple Architectures
	Installation names
	Optional Features
	Specifying the System Type
	Sharing Defaults
	Defining Variables
	`configure' Invocation

