



# **H35DEMO** documentation

| Date         | Version | Authors                                        | Updates                |
|--------------|---------|------------------------------------------------|------------------------|
| January 2016 | 1.0     | Eva Vilella<br><u>vilella@hep.ph.liv.ac.uk</u> | - First stable version |
|              |         | Raimon Casanova<br><u>rcasanova@ifae.es</u>    |                        |
|              |         | Ivan Peric<br><u>ivan.peric@kit.edu</u>        |                        |

# Table of contents

| 1. Main features                                               | 1         |   |
|----------------------------------------------------------------|-----------|---|
| 2. Chip layout                                                 | 2         | • |
| 3. Pads                                                        | 3         | ; |
| 3.1. Main features                                             | 3         | 5 |
| 3.2. List of pads                                              | 5         | ; |
| 3.2.1. Pads on the up part                                     | 8         | , |
| 3.2.2. Pads on the left hand side                              | . 10      | 1 |
| 3.2.3. Pads on the down part                                   | . 14      |   |
| 3.2.4 Pads connected to the test structures                    | . 16      | i |
| 4. General block diagrams                                      | . 18      | ; |
| 5. Standalone nMOS matrix                                      | . 22      | ! |
| 5.1. Pixel schematic without comparator                        | . 22      | ! |
| 5.1.1. Schematic of the simple nMOS comparator                 | . 23      | , |
| 5.1.2. Schematic of the time-walk compensated comparator       | . 24      | • |
| 5.2. Pixel power, input and configuration signals              | . 25      | , |
| 5.2.1. Pixel with the simple nMOS comparator                   | . 25      | , |
| 5.2.2. Pixel with the time-walk compensated comparator         | . 25      | į |
| 5.3. Pixel layout                                              | . 26      | i |
| 5.4. Post-layout simulation                                    | . 26      | i |
| 6. First analog matrix                                         | . 27      | , |
| 6.1. Pixel schematic                                           | . 27      | • |
| 6.1.1. Pixel schematic with ELTs in the FB block               | . 27      | • |
| 6.1.2. Pixel schematic with linear transistors in the FB block | . 28      | í |
| 6.2. Pixel power, input and configuration signals              | . 29      | 1 |
| 6.3. Pixel layout                                              | . 30      | 1 |
| 7. Second analog matrix                                        | . 31      |   |
| 7.1. Pixel schematic                                           | . 31      |   |
| 7.2. Pixel power, input and configuration signals              | . 32      | , |
| 7.3. Pixel layout                                              | . 33      | 5 |
| 7.4. Post-layout simulation                                    | . 33      | í |
| 8. Standalone CMOS matrix                                      | . 34      | ļ |
| 8.1. Pixel schematic                                           | . 34      | , |
| 8.2. Pixel power, input and configuration signals              | . 36      | j |
| 8.3. Pixel layout                                              | . 36      | j |
| 9. Standalone readout digital block                            | . 37      | , |
| 9.1. General overview                                          | . 37      | , |
| 9.1.1. Standalone matrices differences                         | . 38      | ; |
| 9.2. Operation                                                 | . 38      | ; |
| 9.3. I/O signals                                               | . 40      | ) |
| 10. Bias block                                                 | . 41      |   |
| 11 Configuration registers                                     | 47        | , |
| 11 1 Horizontal control register                               |           | , |
| 11.2 Vertical control register                                 | 40        | ) |
| 11.3. Digital horizontal control register                      | . 50      | ) |
| 12 Tast structures                                             | E4        |   |
| 12.1 Circuit to moscure the concer especitores                 | ר .<br>בי |   |
| 12.1. Oncore to measure the sensor capacitance                 | . 51      |   |

| 12.2. Circuit for fast measurements                       | 53 |
|-----------------------------------------------------------|----|
| 12.3. Circuit for sensor measurements without electronics | 54 |

# 1. Main features

| Property                     | Value                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Name of the chip             | H35DEMO                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Technology                   | 0.35 µm High-Voltage CMOS (H35) from ams AG                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Chip size                    | 18490 μm x 24400 μm (without scribe line)                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Tape-out                     | 08-October-2015                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Submission type              | Engineering run                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Fabricated resistivities     | 20 Ω·cm, 80 Ω·cm, 200 Ω·cm, 1k Ω·cm                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Number of wafers/resistivity | 6                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Number of chips per wafer    | 60                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Contents                     | <ul> <li>4 large pixel matrices (all the pixels are 50 µm x 250 µm)</li> <li>standalone nMOS matrix (16 rows x 300 columns)</li> <li>first analog matrix (23 rows x 300 columns)</li> <li>second analog matrix (23 rows x 300 columns)</li> <li>standalone CMOS matrix (16 rows x 300 columns)</li> <li>Test structures</li> <li>The arrays and the test structures are completely independent</li> </ul> |  |  |

Table I Main features of the submitted pixel demonstrator.

# 2. Chip layout



Fig. 1 H35DEMO layout.

# 3. Pads

#### 3.1. Main features

- All the pads are placed on the top side of the ASIC.
- Each matrix has its own pads.

- The pads of the standalone nMOS matrix and the first analog matrix are mirrored with respect to the second analog matrix and the standalone CMOS matrix.

- Size of the passivation opening of each pad:

#### - Pads on the up part (see figure 2):

- Each pad has a pitch of 100 µm.
- Passivation opening is 80 µm x 80 µm.

#### - Pads on the left hand side (see figure 3):

- Each pad has a pitch of 100 µm.
- Passivation opening is 170 µm x 80 µm.

#### - Pads on the down part (see figure 2):

- Each pad has a pitch of 100 µm.
- Passivation opening is 80 µm x 80 µm.



Fig. 2 Schematic diagram of one smaller pad (used in the up and down sides of the chip). All the distances are in µm.



Fig. 3 Schematic diagram of one large pad (used in the left hand side of the chip). All the distances are in µm.

- Types of used pads:

#### (a) PAD\_VP

- It has no protection.
- It is connected to the positive protection diode voltage.
- Used by vdda only.

#### (b) PAD\_VN

- It has no protection.
- It is connected to the negative protection diode voltage.
- Used by gnda only.

#### (c) PAD\_AII\_H35CCPDv1

- It has protection diodes.
- The pad and the internal connection are shorted.

#### (d) PAD\_NoProtNoPad

- It has no protection.
- There is no passivation opening, no wire can be bonded.
- It is used to introduce a separation between low and high-voltage pads, while keeping continuity in the positive and negative protection diode voltages.

#### (e) PAD\_NoProtAll

- It has no protection.
- It is the same pad as PAD\_VP, but with less vias.

- It is used by vdda and HV. In HV, it biases the matrices and it can also bias the substrate guard ring around the pad ring.

#### (f) PAD\_Substrat

- It has no protection.

#### (g) PAD\_AII\_H35CCPDv1 + OutputBufferAnalogAll

- It is a PAD\_AII\_H35CCPDv1 connected to a CMOS input.

#### (h) PAD\_AII\_H35CCPDv1 + OutputBufferDigitalAII

- It is a PAD\_AII\_H35CCPDv1 connected to a CMOS output.

#### (i) PAD\_All\_PullDown

- It is a PAD\_AII\_H35CCPDv1, but with a pull-down resistor.

#### (j) PAD\_NoProt\_Simplest

- It only has a passivation opening and metals for the connections.



Fig. 4 Schematic diagram of the pad distribution. All the pads of the test structures are placed in the TS block - <u>TS contains empty gaps</u> (please see section 3.2.4). All the distances are in  $\mu$ m.

#### Comments:

- In the pcb, we need the following power connectors:

| Name                                                | Value                         | Purpose                                                                                                                                                                                                        |
|-----------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gnda!                                               | 0 V                           | - Analog power                                                                                                                                                                                                 |
| gndd!                                               | 0 V                           | - Digital power of pixels                                                                                                                                                                                      |
| vdda!                                               | 3.3 V                         | - Analog power                                                                                                                                                                                                 |
| vddd!                                               | 3.3 V                         | - Digital power of pixels                                                                                                                                                                                      |
| VSensBias,<br>aSensBias,<br>bSensBias,<br>nSensBias | 3.3 V                         | - Analog input to bias the cathode (dntub) of the sensor through an in-<br>chip resistor. If connected to the positive power, analog or digital, it<br>would not be possible to see particle hits. No current. |
| Sub                                                 | < -50 V                       | - Analog input to bias the anode (p-substrate) of the sensor                                                                                                                                                   |
| vssa!                                               | 2.0 V<br>2.5 V (in ANA1 only) | - Analog input to power the charge sensitive amplifier in the pixels                                                                                                                                           |
| aCascGND,<br>bCascGND,<br>nCascGND                  | 0.4 V                         | <ul> <li>Analog input to power the charge sensitive amplifier (except in ANA1)</li> <li>Analog input to bias the charge sensitive amplifier (only in ANA1)</li> <li>Current ↓↓↓</li> </ul>                     |
| aVPBias,<br>bVPBias,<br>nVPBias                     | > 0 V<br>< 3.3 V              | - Connected to <i>mDac</i> circuit                                                                                                                                                                             |
| ConnBiasPads,<br>nConnBiasPads                      | 0 V or<br>3.3 V               | - CMOS control signal connected to circuit BiasPadsSwitches                                                                                                                                                    |
| ConnBiasPadsB,<br>nConnBiasPadsB                    | 0 V or<br>3.3 V               | - CMOS control signal connected to circuit BiasPadsSwitches                                                                                                                                                    |

Table II Required power and analog input connectors for all the matrices.

| Name              | Value | Purpose                                                    |
|-------------------|-------|------------------------------------------------------------|
| aVGate,<br>bVGate | 3.3 V | - Analog input to pixels (named VPlus in pixel schematics) |

**Table III** Required analog input connectors for the analog matrices.

| Name        | Value      | Purpose                                                                                                                                                                                  |  |  |
|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| gnd!        | 0 V        | - Digital power of digital blocks                                                                                                                                                        |  |  |
| vdd!        | 3.3 V      | - Digital power of digital blocks                                                                                                                                                        |  |  |
| nBL         | 2.2 V      | - Analog input to bias block and digital block. No current.                                                                                                                              |  |  |
| nBLPix      | 1.5 V      | - Analog input to bias block and pixels. No current.                                                                                                                                     |  |  |
| nTh         | nBL+thr    | - Analog input to digital block. The value of thr is usually $6\sigma$ (~32-35 mV). No current.                                                                                          |  |  |
| nThPix      | nBLPix+thr | - Analog input to pixels. The value of thr is usually 6σ (~32-35 mV).<br>- No current.                                                                                                   |  |  |
| nThTwPix    | 1.334 V    | <ul> <li>In nMOS matrix: Analog input to pixels with time-walk compensated comparator.</li> <li>In CMOS matrix: To digital block with 2-threshold scheme.</li> <li>No current</li> </ul> |  |  |
| nVDDRAM     | 3.3 V      | <ul> <li>Analog input to power comparators in standalone matrices</li> <li>Current ↓</li> </ul>                                                                                          |  |  |
| nVGatePix   | 3.6 V      | - Analog input to comparators in pixels. No current.                                                                                                                                     |  |  |
| nVPlusTwPix | 1.6 V      | <ul> <li>In nMOS matrix: Analog input to pixels with time-walk compensated comparator.</li> <li>In CMOS matrix: Not connected.</li> <li>Current ↓↓</li> </ul>                            |  |  |

**Table IV** Required analog input connectors for the standalone matrices.

- In table V, the pads connected to **nMOS** are connected to the **standalone nMOS matrix**; the pads connected to **ANA1** are connected to the **first analog matrix**.

- In table XX, the pads connected to **CMOS** are connected to the **standalone CMOS matrix**; the pads connected to **ANA2** are connected to the **second analog matrix**.

- The matrices work as four completely independent devices. Pads with the same name and belonging to different matrices (except powers) are not connected between them.

- There is no protection between the p-substrate and the exterior world.

#### 3.2.1. Pads on the up part

| Pad number             | Pad name            | Purpose (matrix)  | Pad number     | Pad name           | Purpose (matrix)                |
|------------------------|---------------------|-------------------|----------------|--------------------|---------------------------------|
| U0 (j)                 | vssa!               | Ana in (ANA1)     | U39 (j)        | gnd!               | Power dig (nMOS)                |
| U1 (j)                 | gnda!               | Power ana (ANA1)  | Gap separati   | ion of 100 μm (eqι | uivalent to 1 pad)              |
| U2 (j)                 | VSensBias           | Ana in (ANA1)     | U40 (j)        |                    | HV guard ring                   |
| U3 (j)                 | vssa!               | Ana in (nMOS)     | U41 (j)        |                    | HV guard ring                   |
| U4 (j)                 | VSensBias           | Ana in (nMOS)     | U42 (j)        |                    | HV guard ring                   |
| U5 (j)                 | gnda!               | Power ana (nMOS)  | U43 (j)        |                    | HV guard ring                   |
| U6 (j)                 | vdd!                | Power dig (nMOS)  | U44 (j)        |                    | HV guard ring                   |
| U7 (j)                 | gnd!                | Power dig (nMOS)  | U45 (j)        |                    | HV guard ring                   |
| U8 (j)                 | gnd!                | Power dig (nMOS)  | U46 (j)        |                    | HV guard ring                   |
| U9 (j)                 | vdd!                | Power dig (nMOS)  | U47 (j)        |                    | HV guard ring                   |
| U10 (j)                | ConnBiasPads        | Dig in (ANA1)     | U48 (j)        |                    | HV guard ring                   |
| U11 (j)                | ConnBiasPadsB       | Dig in (ANA1)     | Gap separati   | ion of 100 μm (equ | uivalent to 1 pad)              |
| U12 (j) <sup>(1)</sup> | BiasPAD<0>          | Ana out (ANA1)    | U49 (j)        | gnd!               | Power dig (nMOS)                |
| U13 (j)                | BiasPAD<1>          | Ana out (ANA1)    | U50 (j)        | vdd!               | Power dig (nMOS)                |
| U14 (j)                | BiasPAD<2>          | Ana out (ANA1)    | Gap separati   | ion of 100 μm (eqι | uivalent to 1 pad)              |
| U15 (j)                | BiasPAD<3>          | Ana out (ANA1)    | U51 (c)        | nAddrRPAD<7>       | Dig out (nMOS)                  |
| U16 (j)                | BiasPAD<4>          | Ana out (ANA1)    | U52 (c)        | nAddrRPAD<6>       | Dig out (nMOS)                  |
| U17 (j)                | BiasPAD<5>          | Ana out (ANA1)    | U53 (c)        | nAddrRPAD<5>       | Dig out (nMOS)                  |
| U18 (j)                | BiasPAD<6>          | Ana out (ANA1)    | U54 (c)        | nAddrRPAD<4>       | Dig out (nMOS)                  |
| U19 (j)                | BiasPAD<7>          | Ana out (ANA1)    | U55 (c)        | nAddrRPAD<3>       | Dig out (nMOS)                  |
| Gap separat            | ion of 200 µm (equi | valent to 2 pads) | U56 (c)        | nAddrRPAD<2>       | Dig out (nMOS)                  |
| U20 (j)                | nConnBiasPads       | Dig in (nMOS)     | U57 (c)        | nAddrRPAD<1>       | Dig out (nMOS)                  |
| U21 (j)                | nConnBiasPadsB      | Dig in (nMOS)     | U58 (c)        | nAddrRPAD<0>       | Dig out (nMOS)                  |
| U22 (j)                | nBiasPAD<11>        | Ana out (nMOS)    | U59 (c)        | nTSRPAD<0>         | Dig out (nMOS)                  |
| U23 (j)                | nBiasPAD<12>        | Ana out (nMOS)    | U60 (c)        | nTSRPAD<1>         | Dig out (nMOS)                  |
| U24 (j)                | nBiasPAD<13>        | Ana out (nMOS)    | U61 (c)        | nTSRPAD<2>         | Dig out (nMOS)                  |
| U25 (j)                | nBiasPAD<14>        | Ana out (nMOS)    | U62 (c)        | nTSRPAD<3>         | Dig out (nMOS)                  |
| U26 (j)                | nBiasPAD<15>        | Ana out (nMOS)    | U63 (c)        | nTSRPAD<4>         | Dig out (nMOS)                  |
| U27 (j)                | nBiasPAD<0>         | Ana out (nMOS)    | U64 (c)        | nTSRPAD<5>         | Dig out (nMOS)                  |
| U28 (j)                | nBiasPAD<1>         | Ana out (nMOS)    | U65 (c)        | nTSRPAD<6>         | Dig out (nMOS)                  |
| U29 (j)                | nBiasPAD<2>         | Ana out (nMOS)    | U66 (c)        | nTSRPAD<7>         | Dig out (nMOS)                  |
| U30 (j)                | nBiasPAD<3>         | Ana out (nMOS)    | Gap separati   | on of 6700 µm (eq  | uiv. to 67 pads) <sup>(2)</sup> |
| U31 (j)                | nBiasPAD<4>         | Ana out (nMOS)    | U67 (c)        | nPullDNPAD         | Dig out (nMOS)                  |
| U32 (j)                | nBiasPAD<5>         | Ana out (nMOS)    | U68 (c)        | nRdPixPAD          | Dig out (nMOS)                  |
| U33 (j)                | nBiasPAD<6>         | Ana out (nMOS)    | U69 (c)        | nLdPixPAD          | Dig out (nMOS)                  |
| U34 (j)                | nBiasPAD<7>         | Ana out (nMOS)    | U70 (c)        | nParEnPAD          | Dig out (nMOS)                  |
| U35 (j)                | nBiasPAD<8>         | Ana out (nMOS)    | U71 (c)        | nRoCkPAD           | Dig out (nMOS)                  |
| U36 (j)                | nBiasPAD<9>         | Ana out (nMOS)    | U72 (c)        | nFastLdPAD         | Dig out (nMOS)                  |
| U37 (j)                | nBiasPAD<10>        | Ana out (nMOS)    | U73 (i)        | nTSExt<0>          | Dig in (nMOS)                   |
| Gap separat            | ion of 300 µm (equi | valent to 3 pads) | U74 (i)        | nTSExt<1>          | Dig in (nMOS)                   |
| U38 (j)                | vdd!                | Power dig (nMOS)  | Gap separation | on of 600 µm (equ  | ivalent to 6 pads)              |

<sup>&</sup>lt;sup>1</sup> For more details for pads from U12 to U19 and from U22 to U37, see table XXXII. <sup>2</sup> Test structures are placed in this gap separation. Please see section 3.2.4.

| Pad number                                     | Pad name         | Purpose             | Pad number | Pad name      | Purpose       |
|------------------------------------------------|------------------|---------------------|------------|---------------|---------------|
| U75 (j)                                        |                  | HV guard ring       | U83 (i)    | nTSExt<4>     | Dig in (nMOS) |
| U76 (j)                                        |                  | HV guard ring       | U84 (i)    | nTSExt<5>     | Dig in (nMOS) |
| U77 (j)                                        |                  | HV guard ring       | U85 (i)    | nTSExt<6>     | Dig in (nMOS) |
| U78 (j)                                        |                  | HV guard ring       | U86 (i)    | nTSExt<7>     | Dig in (nMOS) |
| Gap separati                                   | on of 400 µm (ec | uivalent to 4 pads) | U87 (i)    | nRoCkExt      | Dig in (nMOS) |
| U79 (j)                                        | gnd!             | Power dig (nMOS)    | U88 (i)    | nParEnExt     | Dig in (nMOS) |
| U80 (j)                                        | vdd!             | Power dig (nMOS)    | U89 (i)    | nLdPixExt     | Dig in (nMOS) |
| Gap separation of 100 µm (equivalent to 1 pad) |                  | U90 (i)             | nRdPixExt  | Dig in (nMOS) |               |
| U81 (i)                                        | nTSExt<2>        | Dig in (nMOS)       | U91 (i)    | nPullDNExt    | Dig in (nMOS) |
| U82 (i)                                        | nTSExt<3>        | Dig in (nMOS)       |            |               |               |

 Table V Pads on the up part of the chip. They are connected to the standalone nMOS matrix and the first analog matrix.

#### 3.2.2. Pads on the left hand side

#### Standalone nMOS matrix:

| Pad number | Pad name    | Purpose                                  | Pad number | Pad name    | Purpose               |
|------------|-------------|------------------------------------------|------------|-------------|-----------------------|
| L0 (c)     | nSyRes_P    | LVDS in                                  | L37 (c)    | gndd!       | Power dig pix         |
| L1 (c)     | nSyRes_N    | LVDS in                                  | L38 (c)    | gndd!       | Power dig pix         |
| L2 (c)     | nFastCk_P   | LVDS in                                  | L39 (c)    | nVDDRAM     | Ana in                |
| L3 (c)     | nFastCk_N   | LVDS in                                  | L40 (c)    | nBL         | Ana in                |
| L4 (c)     | nAddrL_N    | LVDS out <sup>(3)</sup>                  | L41 (c)    | nTh         | Ana in                |
| L5 (c)     | nAddrL_P    | LVDS out                                 | L42 (c)    | nBLPix      | Ana in pix            |
| L6 (c)     | nTSL_N      | LVDS out                                 | L43 (c)    | nThPix      | Ana in pix            |
| L7 (c)     | nTSL_P      | LVDS out                                 | L44 (c)    | nVGatePix   | Ana in pix            |
| L8 (c)     | nAddrR_N    | LVDS out                                 | L45 (c)    | nThTwPix    | Ana in pix            |
| L9 (c)     | nAddrR_P    | LVDS out                                 | L46 (c)    | nVPlusTwPix | Ana in pix            |
| L10 (c)    | nTSR_N      | LVDS out                                 | L47 (c)    | nSensBias   | Ana in                |
| L11 (c)    | nTSR_P      | LVDS out                                 | L48 (g)    | nMonitor    | Ana out               |
| L12 (c)    | HB_N        | LVDS out                                 | L49 (c)    | nInjection  | Signal in             |
| L13 (c)    | HB_P        | LVDS out                                 | L50 (h)    | nSout       | Dig out CMOS          |
| L14 (c)    | vdd!        | Power dig, protection                    | L51 (c)    | nSIn        | Dig in CMOS           |
| L15 (a)    | vdd!        | Power dig                                | L52 (c)    | nLd         | Dig in CMOS           |
| L16 (c)    | gnd!        | Power dig                                | L53 (c)    | nCk2        | Dig in CMOS           |
| L17 (c)    | gnd!        | Power dig                                | L54 (c)    | nCk1        | Dig in CMOS           |
| L18 (b)    | gnd!        | Power dig, protection                    | L55 (c)    | gndd!       | Power dig pixel       |
| L19 (c)    | gnd!        | Power dig                                | L56 (c)    | gndd!       | Power dig pixel       |
| L20 (e)    | vdd!        | Power dig                                | L57 (c)    | gndd!       | Power dig pixel       |
| L21 (c)    | vdd!        | Power dig                                | L58 (c)    | nVCascPMOS  | Not used              |
| L22 (b)    | gnda!       | Power ana, protection                    | L59 (c)    | nCascGND    | Ana in                |
| L23 (c)    | gnda!       | Power ana                                | L60 (c)    | vddd!       | Power dig pixel       |
| L24 (c)    | gnda!       | Power ana                                | L61 (c)    | vddd!       | Power dig pixel       |
| L25 (c)    | vssa!       | Ana in                                   | L62 (c)    | vddd!       | Power dig pixel       |
| L26 (c)    | vssa!       | Ana in                                   | L63 (c)    | vdda!       | Power ana             |
| L27 (c)    | vssa!       | Ana in                                   | L64 (a)    | vdda!       | Power ana, protection |
| L28 (c)    | VNPix       | Ana out,<br>decoupling or n.c.           | L65 (c)    | vssa!       | Ana in                |
| L29 (c)    | vdda!       | Power ana                                | L66 (c)    | vssa!       | Ana in                |
| L30 (a)    | vdda!       | Power ana, protection                    | L67 (c)    | vssa!       | Ana in                |
| L31 (c)    | vddd!       | Power dig pix                            | L68 (c)    | gnda!       | Power ana             |
| L32 (c)    | vddd!       | Power dig pix                            | L69 (b)    | gnda!       | Power ana, protection |
| L33 (g)    | AnalogOut_0 | Ana out                                  | (d)        | No bonding  | Separation            |
| L34 (c)    | nCascGND    | Ana in, power                            | L70 (e)    | Sub         | HV, chip ring         |
| L35 (c)    | nVPBias     | Ana in, main bias:<br>decoupling or n.c. | L71 (f)    | Sub         | HV, periphery ring    |
| L36 (c)    | gndd!       | Power dig pix                            | L72 (e)    | Sub         | HV, pixel ring        |

Table VI Pads on the left hand side connected to the standalone nMOS matrix.

 $<sup>^3</sup>$  LVDS out means open drain out. It needs a 100  $\Omega$  pull-up resistor to 3.3 V.

#### First analog matrix:

| Pad number | Pad name    | Purpose                                  | Pad number | Pad name   | Purpose               |
|------------|-------------|------------------------------------------|------------|------------|-----------------------|
| L73 (e)    | Sub         | HV, pixel ring                           | L95 (c)    | aSIn       | Dig in CMOS           |
| (d)        | No bonding  | Separation                               | L96 (c)    | aLd        | Dig in CMOS           |
| L74 (b)    | gnda!       | Power ana, protection                    | L97 (c)    | aCk2       | Dig in CMOS           |
| L75 (c)    | gnda!       | Power ana                                | L98 (c)    | aCk1       | Dig in CMOS           |
| L76 (c)    | gnda!       | Power ana                                | L99 (c)    | aSensBias  | Ana in                |
| L77 (c)    | vssa!       | Ana in                                   | L100 (c)   | aVGate     | Ana in                |
| L78 (c)    | vssa!       | Ana in                                   | L101 (c)   | aTh        | Ana out (1.5 V)       |
| L79 (c)    | vssa!       | Ana in                                   | L102 (c)   | aBL        | Ana out (1.5 V)       |
| L80 (a)    | vdda!       | Power ana, protection                    | L103 (c)   | aVCascPMOS | Ana out (1.6 V)       |
| L81 (c)    | vdda!       | Power ana                                | L104 (c)   | aCascGND   | Ana in, not used      |
| L82 (c)    | aVPBias     | Ana in, main bias:<br>decoupling or n.c. | L105 (c)   | vddd!      | Power dig pixel       |
| L83 (c)    | gndd!       | Power dig pixel                          | L106 (c)   | vddd!      | Power dig pixel       |
| L84 (c)    | gndd!       | Power dig pixel                          | L107 (c)   | gndd!      | Power dig pixel       |
| L85 (c)    | vddd!       | Power dig pixel                          | L108 (c)   | gndd!      | Power dig pixel       |
| L86 (c)    | vddd!       | Power dig pixel                          | L109 (c)   | vdda!      | Power ana             |
| L87 (c)    | aCascGND    | Ana in, not used                         | L110 (a)   | vdda!      | Power ana, protection |
| L88 (c)    | alnjection  | Signal in                                | L111 (c)   | vssa!      | Ana in                |
| L89 (c)    | AnalogOut_1 | Ana out                                  | L112 (c)   | vssa!      | Ana in                |
| L90 (c)    | aMonitor<0> | Ana out                                  | L113 (c)   | vssa!      | Ana in                |
| L91 (c)    | aMonitor<1> | Ana out                                  | L114 (c)   | gnda!      | Power ana             |
| L92 (c)    | aMonitor<2> | Ana out                                  | L115 (c)   | gnda!      | Power ana             |
| L93 (c)    | aSOut       | Dig out CMOS                             | L116 (b)   | gnda!      | Power ana, protection |
| L94 (c)    | aShiftEnB   | Dig in CMOS or '0'                       |            |            |                       |

Table VII Pads on the left hand side connected to the first analog matrix.

## Second analog matrix:

| Pad number | Pad name   | Purpose               | Pad number | Pad name    | Purpose               |
|------------|------------|-----------------------|------------|-------------|-----------------------|
| L117 (b)   | gnda!      | Power ana, protection | L139 (c)   | bShiftEnB   | Dig in CMOS or '0'    |
| L118 (c)   | gnda!      | Power ana             | L140 (c)   | bSOut       | Dig out CMOS          |
| L119 (c)   | gnda!      | Power ana             | L141 (c)   | bMonitor<2> | Ana out               |
| L120 (c)   | vssa!      | Ana in                | L142 (c)   | bMonitor<1> | Ana out               |
| L121 (c)   | vssa!      | Ana in                | L143 (c)   | bMonitor<0> | Ana out               |
| L122 (c)   | vssa!      | Ana in                | L144 (c)   | AnalogOut_2 | Ana out               |
| L123 (a)   | vdda!      | Power ana, protection | L145 (c)   | bInjection  | Signal in             |
| L124 (c)   | vdda!      | Power ana             | L146 (c)   | bCascGND    | Ana in                |
| L125 (c)   | gndd!      | Power dig pix         | L147 (c)   | vddd!       | Power dig pix         |
| L126 (c)   | gndd!      | Power dig pix         | L148 (c)   | vddd!       | Power dig pix         |
| L127 (c)   | vddd!      | Power dig pix         | L149 (c)   | gndd!       | Power dig pix         |
| L128 (c)   | vddd!      | Power dig pix         | L150 (c)   | gndd!       | Power dig pix         |
| L129 (c)   | bCascGND   | Ana in                | L151 (c)   | bVPBias     | Ana in                |
| L130 (c)   | bVCascPMOS | Ana out, not used     | L152 (c)   | vdda!       | Power ana             |
| L131 (c)   | bBL        | Ana out (1.5 V)       | L153 (a)   | vdda!       | Power ana, protection |
| L132 (c)   | bTh        | Ana out (1.5 V)       | L154 (c)   | vssa!       | Power ana             |
| L133 (c)   | bVGate     | Ana in                | L155 (c)   | vssa!       | Power ana             |
| L134 (c)   | bSensBias  | Ana in                | L156 (c)   | vssa!       | Power ana             |
| L135 (c)   | bCk1       | Dig in CMOS           | L157 (c)   | gnda!       | Power ana             |
| L136 (c)   | bCk2       | Dig in CMOS           | L158 (c)   | gnda!       | Power ana             |
| L137 (c)   | bLd        | Dig in CMOS           | L169 (b)   | gnda!       | Power ana, protection |
| L138 (c)   | bSIn       | Dig in CMOS           | (d)        | No bonding  | Separation            |
|            |            |                       | L160 (e)   | Sub         | HV, pixel ring        |

Table VIII Pads on the left hand side connected to the second analog matrix.

### CMOS standalone matrix:

| Pad number | Pad name    | Purpose               | Pad number | Pad name    | Purpose                                  |
|------------|-------------|-----------------------|------------|-------------|------------------------------------------|
| L161 (e)   | Sub         | HV, pixel ring        | L197 (c)   | gndd!       | Power dig pix                            |
| L162 (f)   | Sub         | HV, periphery ring    | L198 (c)   | nVPBias     | Ana in, main bias:<br>decoupling or n.c. |
| L163 (e)   | Sub         | HV, chip ring         | L199 (c)   | nCascGND    | Ana in                                   |
| (d)        | No bonding  | Separation            | L200 (g)   | AnalogOut_3 | Ana Out                                  |
| L164 (b)   | gnda!       | Power ana, protection | L201 (c)   | vddd!       | Power dig pix                            |
| L165 (c)   | gnda!       | Power ana             | L202 (c)   | vddd!       | Power dig pix                            |
| L166 (c)   | vssa!       | Ana in                | L203 (a)   | vdda!       | Power ana pix,<br>protection             |
| L167 (c)   | vssa!       | Ana in                | L204 (c)   | vdda!       | Power ana pix                            |
| L168 (c)   | vssa!       | Ana in                | L205 (c)   | VNPix       | Ana out,<br>decoupling or n.c.           |
| L169 (a)   | vdda!       | Power ana, protection | L206 (c)   | vssa!       | Ana in                                   |
| L170 (c)   | vdda!       | Power ana             | L207 (c)   | vssa!       | Ana in                                   |
| L171 (c)   | vddd!       | Power dig pix         | L208 (c)   | vssa!       | Ana in                                   |
| L172 (c)   | vddd!       | Power dig pix         | L209 (c)   | gnda!       | Power ana                                |
| L173 (c)   | vddd!       | Power dig pix         | L210 (c)   | gnda!       | Power ana                                |
| L174 (c)   | nCascGND    | Ana in                | L211 (b)   | gnda!       | Power ana, protection                    |
| L175 (c)   | nVCascPMOS  | Ana out, not used     | L212 (c)   | vdd!        | Power dig                                |
| L176 (c)   | gndd!       | Power dig pix         | L213 (e)   | vdd!        | Power dig                                |
| L177 (c)   | gndd!       | Power dig pix         | L214 (c)   | gnd!        | Power dig                                |
| L178 (c)   | gndd!       | Power dig pix         | L215 (b)   | gnd!        | Power dig, protection                    |
| L179 (c)   | nCk1        | Dig in CMOS           | L216 (c)   | gnd!        | Power dig                                |
| L180 (c)   | nCk2        | Dig in CMOS           | L217 (c)   | gnd!        | Power dig                                |
| L181 (c)   | nLd         | Dig in CMOS           | L218 (a)   | vdd!        | Power dig, protection                    |
| L182 (c)   | nSIn        | Dig in CMOS           | L219 (c)   | vdd!        | Power dig                                |
| L183 (h)   | nSout       | Dig out CMOS          | L220 (c)   | HB_P        | LVDS out                                 |
| L184 (c)   | nInjection  | Signal in             | L221 (c)   | HB_N        | LVDS out                                 |
| L185 (g)   | nMonitor    | Ana out               | L222 (c)   | nTSR_P      | LVDS out                                 |
| L186 (c)   | nSensBias   | Ana in                | L223 (c)   | nTSR_N      | LVDS out                                 |
| L187 (c)   | nVPlusTwPix | Ana in pix, not used  | L224 (c)   | nAddrR_P    | LVDS out                                 |
| L188 (c)   | nThTwPix    | Ana in pix            | L225 (c)   | nAddrR_N    | LVDS out                                 |
| L189 (c)   | nVGatePix   | Ana in pix            | L226 (c)   | nTSL_P      | LVDS out                                 |
| L190 (c)   | nThPix      | Ana in pix            | L227 (c)   | nTSL_N      | LVDS out                                 |
| L191 (c)   | nBLPix      | Ana in pix            | L228 (c)   | nAddrL_P    | LVDS out                                 |
| L192 (c)   | nTh         | Ana in                | L229 (c)   | nAddrL_N    | LVDS out                                 |
| L193 (c)   | nBL         | Ana in                | L230 (c)   | nFastCk_N   | LVDS in                                  |
| L194 (c)   | nVDDRAM     | Ana in                | L231 (c)   | nFastCk_P   | LVDS in                                  |
| L195 (c)   | gndd!       | Power dig pix         | L232 (c)   | nSyRes_N    | LVDS in                                  |
| L196 (c)   | gndd!       | Power dig pix         | L233 (c)   | nSyRes_P    | LVDS in                                  |

 Table IX Pads on the left hand side connected to the standalone CMOS matrix.

#### 3.2.3. Pads on the down part

| Pad number             | Pad name            | Purpose (matrix)               | Pad number                                      | Pad name          | Purpose (matrix)                |
|------------------------|---------------------|--------------------------------|-------------------------------------------------|-------------------|---------------------------------|
| D0 (j)                 | vssa!               | Ana in (ANA2)                  | D39 (j)                                         | gnd!              | Power dig (CMOS)                |
| D1 (j)                 | gnda!               | Power ana (ANA2)               | Gap separati                                    | on of 100 µm (equ | uivalent to 1 pad)              |
| D2 (j)                 | VSensBias           | Ana in (ANA2)                  | D40 (j)                                         |                   | HV guard ring                   |
| D3 (j)                 | vssa!               | Ana in (CMOS)                  | D41 (j)                                         |                   | HV guard ring                   |
| D4 (j)                 | VSensBias           | Ana in (CMOS)                  | D42 (j)                                         |                   | HV guard ring                   |
| D5 (j)                 | gnda!               | Power ana (CMOS)               | D43 (j)                                         |                   | HV guard ring                   |
| D6 (j)                 | vdd!                | Power dig (CMOS)               | D44 (j)                                         |                   | HV guard ring                   |
| D7 (j)                 | gnd!                | Power dig (CMOS)               | D45 (j)                                         |                   | HV guard ring                   |
| D8 (j)                 | gnd!                | Power dig (CMOS)               | D46 (j)                                         |                   | HV guard ring                   |
| D9 (j)                 | vdd!                | Power dig (CMOS)               | D47 (j)                                         |                   | HV guard ring                   |
| D10 (j)                | ConnBiasPads        | Dig in (ANA2)                  | D48 (j)                                         |                   | HV guard ring                   |
| D11 (j)                | ConnBiasPadsB       | Dig in (ANA2)                  | Gap separati                                    | on of 100 µm (equ | uivalent to 1 pad)              |
| D12 (j) <sup>(4)</sup> | BiasPAD<0>          | Ana out (ANA2)                 | D49 (j)                                         | gnd!              | Power dig (CMOS)                |
| D13 (j)                | BiasPAD<1>          | Ana out (ANA2)                 | D50 (j)                                         | vdd!              | Power dig (CMOS)                |
| D14 (j)                | BiasPAD<2>          | Ana out (ANA2)                 | Gap separati                                    | on of 100 µm (equ | uivalent to 1 pad)              |
| D15 (j)                | BiasPAD<3>          | Ana out (ANA2)                 | D51 (c)                                         | AddrRPAD<7>       | Dig out (CMOS)                  |
| D16 (j)                | BiasPAD<4>          | Ana out (ANA2)                 | D52 (c)                                         | AddrRPAD<6>       | Dig out (CMOS)                  |
| D17 (j)                | BiasPAD<5>          | Ana out (ANA2)                 | D53 (c)                                         | AddrRPAD<5>       | Dig out (CMOS)                  |
| D18 (j)                | BiasPAD<6>          | Ana out (ANA2)                 | D54 (c)                                         | AddrRPAD<4>       | Dig out (CMOS)                  |
| D19 (j)                | BiasPAD<7>          | Ana out (ANA2)                 | D55 (c)                                         | AddrRPAD<3>       | Dig out (CMOS)                  |
| Gap separat            | ion of 200 μm (equi | 0 μm (equivalent to 2 pads) D5 |                                                 | AddrRPAD<2>       | Dig out (CMOS)                  |
| D20 (j)                | ConnBiasPads        | Dig in (CMOS)                  | D57 (c)                                         | AddrRPAD<1>       | Dig out (CMOS)                  |
| D21 (j)                | ConnBiasPadsB       | Dig in (CMOS)                  | D58 (c)                                         | AddrRPAD<0>       | Dig out (CMOS)                  |
| D22 (j)                | BiasPAD<11>         | Ana out (CMOS)                 | D59 (c)                                         | TSRPAD<0>         | Dig out (CMOS)                  |
| D23 (j)                | BiasPAD<12>         | Ana out (CMOS)                 | D60 (c)                                         | TSRPAD<1>         | Dig out (CMOS)                  |
| D24 (j)                | BiasPAD<13>         | Ana out (CMOS)                 | D61 (c)                                         | TSRPAD<2>         | Dig out (CMOS)                  |
| D25 (j)                | BiasPAD<14>         | Ana out (CMOS)                 | D62 (c)                                         | TSRPAD<3>         | Dig out (CMOS)                  |
| D26 (j)                | BiasPAD<15>         | Ana out (CMOS)                 | D63 (c)                                         | TSRPAD<4>         | Dig out (CMOS)                  |
| D27 (j)                | BiasPAD<0>          | Ana out (CMOS)                 | D64 (c)                                         | TSRPAD<5>         | Dig out (CMOS)                  |
| D28 (j)                | BiasPAD<1>          | Ana out (CMOS)                 | D65 (c)                                         | TSRPAD<6>         | Dig out (CMOS)                  |
| D29 (j)                | BiasPAD<2>          | Ana out (CMOS)                 | D66 (c)                                         | TSRPAD<7>         | Dig out (CMOS)                  |
| D30 (j)                | BiasPAD<3>          | Ana out (CMOS)                 | Gap separati                                    | on of 6700 µm (eq | uiv. to 67 pads) <sup>(5)</sup> |
| D31 (j)                | BiasPAD<4>          | Ana out (CMOS)                 | D67 (c)                                         | PullDNPAD         | Dig out (CMOS)                  |
| D32 (j)                | BiasPAD<5>          | Ana out (CMOS)                 | D68 (c)                                         | RdPixPAD          | Dig out (CMOS)                  |
| D33 (j)                | BiasPAD<6>          | Ana out (CMOS)                 | D69 (c)                                         | LdPixPAD          | Dig out (CMOS)                  |
| D34 (j)                | BiasPAD<7>          | Ana out (CMOS)                 | D70 (c)                                         | ParEnPAD          | Dig out (CMOS)                  |
| D35 (j)                | BiasPAD<8>          | Ana out (CMOS)                 | D71 (c)                                         | RoCkPAD           | Dig out (CMOS)                  |
| D36 (j)                | BiasPAD<9>          | Ana out (CMOS)                 | D72 (c)                                         | FastLdPAD         | Dig out (CMOS)                  |
| D37 (j)                | BiasPAD<10>         | Ana out (CMOS)                 | D73 (i)                                         | TSExt<0>          | Dig in (CMOS)                   |
| Gap separat            | ion of 300 µm (equi | valent to 3 pads)              | D74 (i)                                         | TSExt<1>          | Dig in (CMOS)                   |
| D38 (j)                | vdd!                | Power dig (CMOS)               | Gap separation of 600 µm (equivalent to 6 pads) |                   |                                 |

<sup>&</sup>lt;sup>4</sup> For more details for pads from D12 to D19 and from D22 to D37, see table XXXII. <sup>5</sup> Test structures are placed in this gap separation. Please see section 3.2.4.

| Pad number                                      | Pad name | Purpose          | Pad number | Pad name      | Purpose       |
|-------------------------------------------------|----------|------------------|------------|---------------|---------------|
| D75 (j)                                         |          | HV guard ring    | D83 (i)    | TSExt<4>      | Dig in (CMOS) |
| D76 (j)                                         |          | HV guard ring    | D84 (i)    | TSExt<5>      | Dig in (CMOS) |
| D77 (j)                                         |          | HV guard ring    | D85 (i)    | TSExt<6>      | Dig in (CMOS) |
| D78 (j)                                         |          | HV guard ring    | D86 (i)    | TSExt<7>      | Dig in (CMOS) |
| Gap separation of 400 µm (equivalent to 4 pads) |          | D87 (i)          | RoCkExt    | Dig in (CMOS) |               |
| D79 (j)                                         | gnd!     | Power dig (CMOS) | D88 (i)    | ParEnExt      | Dig in (CMOS) |
| D80 (j)                                         | vdd!     | Power dig (CMOS) | D89 (i)    | LdPixExt      | Dig in (CMOS) |
| Gap separation of 100 µm (equivalent to 1 pad)  |          | D90 (i)          | RdPixExt   | Dig in (CMOS) |               |
| D81 (i)                                         | TSExt<2> | Dig in (CMOS)    | D91 (i)    | PullDNExt     | Dig in (CMOS) |
| D82 (i)                                         | TSExt<3> | Dig in (CMOS)    |            |               |               |

**Table X** Pads on the down part of the chip. They are connected to the standalone CMOS matrix and the second analog matrix.

#### 3.2.4 Pads connected to the test structures

#### Up part of the chip:



Fig. 5 Schematic diagram of the pad distribution on the up part. All the distances are in  $\mu$ m.

| Pad number  | Pad name         | Purpose           | Pad number                                  | Pad name         | Purpose           |
|-------------|------------------|-------------------|---------------------------------------------|------------------|-------------------|
|             |                  |                   | TS_U17 (c)                                  | ConnLow          | Pulse signal      |
| U66 (c)     | TSRPAD<7>        | Dig out (nMOS)    | TS_U18 (c)                                  | VLow             | Ana in (gnda!)    |
| Gap separat | ion of 700 µm (e | quiva. to 7 pads) | (d)                                         | No bonding       | Separation        |
| TS_U0 (c)   | VHi              | Ana in (vdda!)    | TS_U19 (e)                                  | Sub              | HV                |
| TS_U1 (c)   | ConnHi           | Pulse signal      | Gap separat                                 | ion of 200 µm (e | quiva. to 2 pads) |
| TS_U2 (c)   | ConnLow          | Pulse signal      | TS_U20 (c)                                  | VHi              | Ana in (vdda!)    |
| TS_U3 (c)   | VLow             | Ana in (gnda!)    | TS_U21 (c)                                  | ConnHi           | Pulse signal      |
| (d)         | No bonding       | Separation        | TS_U22 (c)                                  | ConnLow          | Pulse signal      |
| TS_U4 (e)   | Sub              | HV                | TS_U23 (c)                                  | VLow             | Ana in (gnda!)    |
| Gap separat | ion of 300 µm (e | quiva. to 3 pads) | (d)                                         | No bonding       | Separation        |
| TS_U5 (c)   | VHi              | Ana in (vdda!)    | TS_U24 (e)                                  | Sub              | HV                |
| TS_U6 (c)   | ConnHi           | Pulse signal      | Gap separation of 300 µm (equiva. to 2 pads |                  |                   |
| TS_U7 (c)   | ConnLow          | Pulse signal      | TS_U25 (c)                                  | VHi              | Ana in (vdda!)    |
| TS_U8 (c)   | VLow             | Ana in (gnda!)    | TS_U26 (c)                                  | ConnHi           | Pulse signal      |
| (d)         | No bonding       | Separation        | TS_U27 (c)                                  | ConnLow          | Pulse signal      |
| TS_U9 (e)   | Sub              | HV                | TS_U28 (c)                                  | VLow             | Ana in (gnda!)    |
| Gap separat | ion of 300 µm (e | quiva. to 3 pads) | TS_U29 (c)                                  | vdda!            | Power ana         |
| TS_U10 (c)  | VHi              | Ana in (vdda!)    | TS_U30 (a)                                  | vdda!            | Power ana         |
| TS_U11 (c)  | ConnHi           | Pulse signal      | TS_U31 (c)                                  | gnda!            | Power ana         |
| TS_U12 (c)  | ConnLow          | Pulse signal      | TS_U32 (b)                                  | gnda!            | Power ana         |
| TS_U13 (c)  | VLow             | Ana in (gnda!)    | (d)                                         | No bonding       | Separation        |
| (d)         | No bonding       | Separation        | TS_U33 (e)                                  | Sub              | HV                |
| TS_U14 (e)  | Sub              | HV                | Gap separat                                 | ion of 700 µm (e | quiva. to 7 pads) |
| Gap separat | ion of 200 µm (e | quiva. to 2 pads) | U67 (c)                                     | nPullDNPAD       | Dig in (nMOS)     |
| TS_U15 (c)  | VHi              | Ana in (vdda!)    |                                             |                  |                   |
| TS_U16 (c)  | ConnHi           | Pulse signal      |                                             |                  |                   |

Table XI Pads on the up part of the chip that are connected to the test structures.

#### Down part of the chip:



Fig. 6 Schematic diagram of the pad distribution on the down part. All the distances are in  $\mu$ m.

| Pad number                                     | Pad name   | Purpose        | Pad number                | Pad name         | Purpose            |
|------------------------------------------------|------------|----------------|---------------------------|------------------|--------------------|
|                                                |            | TS_D6 (e)      | Sub                       | HV               |                    |
| D66 (c)                                        | TSRPAD<7>  | Dig out (CMOS) | (d)                       | No bonding       | Separation         |
| Gap separation of 3800 µm (equiva. to 38 pads) |            | TS_D7 (b)      | gnda!                     | Power ana        |                    |
| TS_D0 (c)                                      | Dioln      | Ana in         | TS_D8 (a)                 | vdda!            | Power ana          |
| TS_D1 (c)                                      | DioOut     | Ana out        | TS_D9 (c)                 | DioBias          | Ana in             |
| TS_D2 (a)                                      | vdda!      | Power ana      | TS_D10 (c) <sup>(6)</sup> | VHi              | Ana in             |
| TS_D3 (c)                                      | PW         | Ana in         | TS_D11 (c) <sup>(7)</sup> | Dioln            | Ana out (to Res)   |
| TS_D4 (b)                                      | gnda!      | Power ana      | Gap separation            | on of 1400 µm (e | quiva. to 14 pads) |
| (d)                                            | No bonding | Separation     | D67 (c)                   | PullDNPAD        | Dig in (CMOS)      |
| TS_D5 (e)                                      | Sub        | HV             |                           |                  |                    |
| Gap separation of 100 µm (equiva. to 1 pad)    |            |                |                           |                  |                    |

Table XII Pads on the down part of the chip that are connected to the test structures.

<sup>&</sup>lt;sup>6</sup> The pads used in TS\_D10 and in TS\_D11 are PAD\_AII\_H35CCPDv1, but without MET3. In this circuit, MET3 is used for the connections (very wide lines) between the readout circuit and the pads. <sup>7</sup> The pads used in TS\_D10 and in TS\_D11 are DAD\_AII\_H05COPD2.1 to the pads.

<sup>&</sup>lt;sup>7</sup> The pads used in TS\_D10 and in TS\_D11 are PAD\_All\_H35CCPDv1, but without MET3. In this circuit, MET3 is used for the connections (very wide lines) between the readout circuit and the pads.

# 4. General block diagrams



Fig. 7 Simplified block diagram of the standalone nMOS matrix. Global powers (gnda!, gndd!, gnd!, vdda!, vddd! and vdd!), vssa! and HV are not included in this diagram.



Fig. 8 Simplified block diagram of the first analog matrix. Global powers (gnda!, gndd!, gnd!, vdda!, vddd! and vdd!), vssa! and HV are not included in this diagram.



Fig. 9 Simplified block diagram of the second analog matrix. Global powers (gnda!, gndd!, gnd!, vdda!, vddd! and vdd!), vssa! and HV are not included in this diagram.



Fig. 10 Simplified block diagram of the standalone CMOS matrix. Global powers (gnda!, gndd!, gnd!, vdda!, vddd! and vdd!), vssa! and HV are not included in this diagram.

# 5. Standalone nMOS matrix

| Property         | Value                                                                                                                           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Number of pixels | 16 rows x 300 columns of pixels                                                                                                 |
| Type of pixels   | <ul> <li>150 columns with a simple nMOS comparator</li> <li>150 columns with a time-walk compensated nMOS comparator</li> </ul> |

Table XIII Main features of the standalone nMOS matrix.

#### 5.1. Pixel schematic without comparator



Fig. 11 Schematic of one pixel (without comparator) from the standalone nMOS matrix.

| Component | Value       | Component | Value     |
|-----------|-------------|-----------|-----------|
| P0        | (3.9/3.65)  | N0        | (6/1)     |
| P1-P2     | (1/3)       | N1        | (5/0.4)   |
| P2        | (1/3)       | N2        | (2/3)     |
| P3        | (10.6/12.2) | N3        | (5/0.4)   |
| P4        | (40/0.4)    | N4        | (5/0.4)   |
| P5-P6-P7  | (0.7/3)     | N5        | (6/1)     |
| P8-P9     | (0.7/3)     | N6        | (6/1)     |
| P9        | (0.7/3)     | N7-N8     | (5/0.4)   |
|           |             | N9        | (0.8/9.7) |
| C         | 150.84 fF   | N10       | (5/0.4)   |
|           |             | NA-NB     | (1/0.4)   |

Table XIV Values of components of one pixel (without comparator) from the standalone nMOS matrix.

#### 5.1.1. Schematic of the simple nMOS comparator



Fig. 12 Schematic of the simple nMOS comparator.

| Component | Value              |  |  |
|-----------|--------------------|--|--|
| N11-N12   | (0.4/17.8)         |  |  |
| N13-N14   | (6/1)              |  |  |
| N15       | (1.85/7.5)         |  |  |
| N16-N17   | (0.4/8.9)          |  |  |
| N18-N19   | (6/1)              |  |  |
| N20       | (1.85/4)           |  |  |
| N21       | (0.4/7.7)          |  |  |
| N22       | (0.4/0.35)         |  |  |
| N23-N24   | (6/1)              |  |  |
| N25       | (1.85/4)           |  |  |
| N26       | (0.9/3.9)          |  |  |
|           |                    |  |  |
| dntub_1   | 231 µm x 30 µm     |  |  |
| dptub_1   | 55 µm x 16.65 µm   |  |  |
| dptub_2   | 57.75 μm x 17.1 μm |  |  |

Table XV Values of components from the simple nMOS comparator.

#### 5.1.2. Schematic of the time-walk compensated comparator



Fig. 13 Schematic of the time-walk compensated nMOS comparator. The first and second comparators within the time-walk compensated comparator are based on 2 differential amplifiers each, like in the simple nMOS comparator, but with different (W/L) and without the output stage.

| Component | Value                | Value      |
|-----------|----------------------|------------|
| N11-N12   | (0.4/17.8)           | (0.4/17.8) |
| N13-N14   | (6/1)                | (6/1)      |
| N15       | (1.85/7.5)           | (1.85/8)   |
| N16-N17   | (0.4/17.8) (0.4/8.9) |            |
| N18-N19   | (6/1)                | (6/1)      |
| N20       | (1.85/8)             | (1.85/4)   |

 Table XVI Values of components from the first (1st column) and second (2nd column) simple nMOS comparators included in the time-walk compensated comparator.

| Component | Value            |  |  |
|-----------|------------------|--|--|
| N21-N22   | (6/1)            |  |  |
| N23       | (1.85/8)         |  |  |
| N24       | (5/0.4)          |  |  |
| N25       | (1.85/8)         |  |  |
| N26       | (0.4/7.7)        |  |  |
| N27       | (0.4/0.35)       |  |  |
| N28-N29   | (5/0.4)          |  |  |
| N30       | (1/1.8)          |  |  |
| N31       | (0.5/1.8)        |  |  |
|           |                  |  |  |
| C         | 235.26 fF        |  |  |
|           |                  |  |  |
| dntub_1   | 231 µm x 30 µm   |  |  |
| dptub_1   | 55 µm x 16.65 µm |  |  |
| dptub_2   | 109 µm x 17.1 µm |  |  |

Table XVII Values of components from the time-walk compensated nMOS comparator.

#### 5.2. Pixel power, input and configuration signals

| Power name | Value    | Input name | Value      | Configuration | Value |
|------------|----------|------------|------------|---------------|-------|
| nCascGND   | 0.4 V    | BLPix      | 1.5 V (10) | BLRes         | 1     |
| gnda       | 0 V      | BLRPix     | Bias block | BLResDig      | 10    |
| gndd       | 0 V      | EnCCPD     | vdda       | NAmp          | 60    |
| HV         | < - 50 V | EnTest     | gnda       | NBiasRes      | 1     |
| vdda       | 3.3 V    | Inj        |            | NcompDig      | 10    |
| vddd       | 3.3 V    | InjEn      | vdda       | NDelDig       | 10    |
| vssa       | 2.0 V    | InjEnB     | gnda       | NFB           | 5     |
| VSensBias  | 3.3 V    | nVGatePix  | 3.3 V      | NFoll         | 50    |
|            |          | VNPix      | Bias block | NLogic        | 20    |
|            |          | VNBias     | Bias block | NTrim1        | 10    |
|            |          | VNFB       | Bias block | NTw           | 15    |
|            |          | VNLogic    | Bias block | NTwDown       | 30    |
|            |          | VNSF       | Bias block | PDelDig       | 10    |
|            |          | VPLoad     | Bias block | PLoad         | 5     |
|            |          | VPLoadD    | VPLoad     | PTrimDig      | 10    |
|            |          | Test       | 3.3 V      | thr           | 35m   |
|            |          | ThPix      | BLPix      | VPAB          | 10    |

#### 5.2.1. Pixel with the simple nMOS comparator

Table XVIII Values of power and input/output signals of the standalone pixels with simple nMOS comparator.

#### 5.2.2. Pixel with the time-walk compensated comparator

| Power name | Value    | Input name | Value      | Output name | Value |
|------------|----------|------------|------------|-------------|-------|
| nCascGND   | 0.4 V    | BLPix      | 1.5 V (5)  | BLRes       | 1     |
| gnda       | 0 V      | BLRPix     | Bias block | BLResDig    | 10    |
| gndd       | 0 V      | EnCCPD     | vdda       | NAmp        | 60    |
| HV         | < - 50 V | EnTest     | gnda       | NBiasRes    | 1     |
| vdda       | 3.3 V    | Inj        |            | NcompDig    | 10    |
| vddd       | 3.3 V    | InjEn      | vdda       | NDelDig     | 10    |
| vssa       | 2.0 V    | InjEnB     | gnda       | NFB         | 5     |
| VPlusTw    |          | nVGatePix  | 3.3 V      | NFoll       | 50    |
| VSensBias  | 3.3 V    | VNPix      | Bias block | NLogic      | 20    |
|            |          | VNBias     | Bias block | NTrim1      | 10    |
|            |          | VNFB       | Bias block | NTw         | 15    |
|            |          | VNLogic    | Bias block | NTwDown     | 30    |
|            |          | VNSF       | Bias block | PDelDig     | 10    |
|            |          | VPLoad     | Bias block | PLoad       | 5     |
|            |          | VPLoadD    | VPLoad     | PTrimDig    | 10    |
|            |          | Test       | 3.3 V      | thr         | 35m   |
|            |          | ThPix      | BLPix      | VPAB        | 10    |

 Table XIX Values of power and input/output signals of the standalone pixels with time-walk compensated nMOS comparator.

#### 5.3. Pixel layout

Fig. 14 Layout of the pixel with the simple nMOS comparator.



Fig. 15 Layout of the pixel with the time-walk compensated nMOS comparator.



#### 5.4. Post-layout simulation

Fig. 16 Transient post-layout simulation of node CCPD in the standalone nMOS pixel (a) with a simple comparator and (b) with a time-walk compensated comparator.

# 6. First analog matrix

| Property         | Value                                                                                                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of pixels | 23 rows x 300 columns of pixels                                                                                                                                                                                |
| Type of pixels   | <ul> <li>100 columns columns with extra DPTUB for HV and ELTs in FB</li> <li>100 columns without DPTUB for HV and ELTs in FB</li> <li>100 columns without DPTUB for HV and linear transistors in FB</li> </ul> |

Table XX Main features of the first analog matrix.

#### 6.1. Pixel schematic

#### 6.1.1. Pixel schematic with ELTs in the FB block



Fig. 17 Schematic of one pixel from the first analog matrix. The feedback block uses enclosed transistors.

| Component | Value               | Component | Value      |
|-----------|---------------------|-----------|------------|
| P0        | (3.9/3.65)          | N0        | (6/1)      |
| P1        | (1/3)               | N1        | (5/0.4)    |
| P2        | (1/3)               | N2        | (5/0.4)    |
| P3        | (8.6/14.2)          | N3        |            |
| P4        | (2.8/2)             | N4        | (5/0.4)    |
| P4'       | (0.7/2)             | N5        | (6/1)      |
| P5-P6-P7  | (0.7/3)             | N6        | (6/1)      |
| P8-P9     | (0.7/3)             | N7-N8     | (5/0.4)    |
|           |                     | N9        | (4.7/3.8)  |
| C         | 80.66 fF            | N10       | (5/0.4)    |
|           |                     | N11       | (1/8.9)    |
| dntub_1   | 103 µm x 30 µm      | N12-N13   | (6/1)      |
| dntub_2   | 37 µm x 30 µm       | N14       | (1.85/3.8) |
| dntub_3   | 50 µm x 30 µm       | N15       |            |
| dptub_1   | 64.55 µm x 16.65 µm | N16-N17   | (5/0.4)    |
|           |                     | NA-NB     | (1/0.4)    |

Table XXI Values of components of one analog pixel from the first analog matrix.

#### 6.1.2. Pixel schematic with linear transistors in the FB block



Fig. 18 Schematic of one pixel from the first analog matrix. The feedback block uses linear transistors.

| Component | Value               | Component | Value      |
|-----------|---------------------|-----------|------------|
| P0        | (3.9/3.65)          | N0        | (6/1)      |
| P1        | (1/3)               | N1        | (5/0.4)    |
| P2        | (1/3)               | N2        | (5/0.4)    |
| P3        | (8.6/14.2)          | N3        |            |
| P4        | (2.8/2)             | N4        | (5/0.4)    |
| P4'       | (0.7/2)             | N5        | (6/1)      |
| P5-P6-P7  | (0.7/3)             | N6        | (6/1)      |
| P8-P9     | (0.7/3)             | N7-N8     | (5/0.4)    |
|           |                     | N9        | (4.7/3.8)  |
| C         | 80.66 fF            | N10       | (5/0.4)    |
|           |                     | N11       | (1/8.9)    |
| dntub_1   | 103 µm x 30 µm      | N12-N13   | (6/1)      |
| dntub_2   | 37 µm x 30 µm       | N14       | (1.85/3.8) |
| dntub_3   | 50 µm x 30 µm       | N15       |            |
| dptub_1   | 64.55 µm x 16.65 µm | N16-N17   | (5/0.4)    |
|           |                     | NA-NB     | (1/0.4)    |

Table XXII Values of components of one analog pixel from the first analog matrix.

## 6.2. Pixel power, input and configuration signals

| Power name | Value    | Input name | Value      | Output name | Value |
|------------|----------|------------|------------|-------------|-------|
| aCascGND   | 0.4 V    | nBL        | 1.5 V (10) | BLRes       | 1     |
| gnda       | 0 V      | BLR        | Bias block | BLResDig    | 1     |
| gndd       | 0 V      | EnCCPD     | vdda       | NAmp        | 30    |
| HV         | < - 50 V | EnTest     | gnda       | NBiasRes    | 1     |
| vdda       | 3.3 V    | Inj        |            | NcompDig    | 30    |
| vddd       | 3.3 V    | InjEn      | vdda       | NDelDig     | 10    |
| vssa       | 2.0 V    | InjEnB     | gnda       | NFB         | 10    |
| VSensBias  | 3.3 V    | aVGate     | 3.3 V      | NFoll       | 30    |
|            |          | VN         | Bias block | NLogic      | 20    |
|            |          | VNBias     | Bias block | NTrim1      | 10    |
|            |          | VNFB       | Bias block | NTw         | 15    |
|            |          | VNLogic    | Bias block | NTwDown     | 30    |
|            |          | VNSF       | Bias block | PDelDig     | 10    |
|            |          | VPLoad     | Bias block | PLoad       | 10    |
|            |          | VPLoadD    | VPLoad     | PTrimDig    | 10    |
|            |          | Test       | 3.3 V      | thr         | 32m   |
|            |          | aTh        | nBL        | VPAB        | 10    |

Table XXIII Values of power and input/output signals of the pixels from the first analog matrix.

#### 6.3. Pixel layout

Fig. 19 Layout of the analog pixel with the extra DPTUB and ELTs in the FB block.



Fig. 20 Layout of the analog pixel without the extra DPTUB and linear transistors in the FB block.

# 7. Second analog matrix

| Property         | Value                                                                                                                                                                                            |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of pixels | 23 rows x 300 columns of pixels                                                                                                                                                                  |
| Type of pixels   | <ul> <li>100 columns with extra DPTUB for HV and high gain</li> <li>100 columns without extra DPTUB for HV and high gain</li> <li>100 columns without extra DPTUB for HV and low gain</li> </ul> |

Table XXIV Main features of the second analog matrix.

#### 7.1. Pixel schematic



**Fig. 21** Schematic of one pixel from the second analog matrix. The three pixel types present the same schematic. The high speed pixel, at the expenses of a low gain, is achieved by adding a capacitor between SFOut and dntub.

| Component | Value               | Component | Value      |
|-----------|---------------------|-----------|------------|
| P0        | (3.9/3.65)          | N0        | (6/1)      |
| P1        | (1/3)               | N1        | (4.9/0.35) |
| P2        | (1/3)               | N2        | (2/3)      |
| P3        | (8.6/14.2)          | N3        | (5/0.4)    |
| P4        | (40/0.4)            | N4        | (5/0.4)    |
| P5- P6-P7 | (0.7/3)             | N5        | (6/1)      |
| P8-P9     | (0.7/3)             | N6        | (6/1)      |
|           |                     | N7- N8    | (5/0.4)    |
| С         | 80.66 fF            | N9        | (4.7/3.8)  |
|           |                     | N10       | (5/0.4)    |
| dntub_1   | 103 µm x 30 µm      | N11       | (1/8.9)    |
| dntub_2   | 37 µm x 30 µm       | N12-N13   | (6/1)      |
| dntub_3   | 50 µm x 30 µm       | N14       | (1.85/3.8) |
| dptub_1   | 64.55 µm x 16.65 µm | N15       |            |
|           |                     | N16-N17   | (5/0.4)    |
|           |                     | NA-NB     | (1/0.4)    |

Table XXV Values of components of one analog pixel from the second analog matrix.

| 7.2. Pixel power, input and configuration signa |
|-------------------------------------------------|
|-------------------------------------------------|

| Power name | Value    | Input name | Value      | Configuration | Value |
|------------|----------|------------|------------|---------------|-------|
| bCascGNDA  | 0.4 V    | bBL        | 1.5 V      | BLRes         | 1     |
| gnda       | 0 V      | BLR        | Bias block | BLResDig      | 1     |
| gndd       | 0 V      | EnCCPD     | vdda       | NAmp          | 30    |
| HV         | < - 50 V | EnTest     | gnda       | NBiasRes      | 1     |
| vdda       | 3.3 V    | Inj        |            | NcompDig      | 30    |
| vddd       | 3.3 V    | InjEn      | vdda       | NDelDig       | 10    |
| vssa       | 2.0 V    | InjEnB     | gnda       | NFB           | 10    |
| VSensBias  | 3.3 V    | aVGate     | 3.3 V      | NFoll         | 30    |
|            |          | VN         | Bias block | NLogic        | 20    |
|            |          | VNBias     | Bias block | NTrim1        | 10    |
|            |          | VNFB       | Bias block | NTw           | 15    |
|            |          | VNLogic    | Bias block | NTwDown       | 30    |
|            |          | VNSF       | Bias block | PDelDig       | 10    |
|            |          | VPLoad     | Bias block | PLoad         | 10    |
|            |          | VPLoadD    | VPLoad     | PTrimDig      | 10    |
|            |          | Test       | 3.3 V      | thr           | 32m   |
|            |          | bTh        | bBL        | VPAB          | 10    |

 Table XXVI
 Values of power and input/output signals of the pixels from the second analog matrix.

#### 7.3. Pixel layout

Fig. 22 Layout of the analog pixel with the extra DPTUB and high gain.



Fig. 23 Layout of the analog pixel without the extra DPTUB and low gain.



#### 7.4. Post-layout simulation

Fig. 24 Transient post-layout simulation of nodes (a) SFOut and (b) CCPD in the analog pixel without the extra DPTUB and high gain. The input energy ranges from 0.5 MIP (750 e<sup>-</sup>) to 3 MIP (4500 e<sup>-</sup>).

# 8. Standalone CMOS matrix

| Property         | Value                           |
|------------------|---------------------------------|
| Number of pixels | 16 rows x 300 columns of pixels |
| Type of pixels   | - 1 pixel type                  |

Table XXVII Main features of the standalone CMOS matrix.

#### 8.1. Pixel schematic



Fig. 25 Schematic of one pixel (without comparator) from the standalone CMOS matrix.

| Component | Value              | Component | Value      |
|-----------|--------------------|-----------|------------|
| P0        | (3.9/3.65)         | N0        | (6/1)      |
| P1        | (1/3)              | N1        | (4.9/0.35) |
| P2        | (1/3)              | N2        | (2/3)      |
| P3        | (10.6/12.2)        | N3        | (5/0.4)    |
| P4        | (40/0.4)           | N4        | (5/0.4)    |
| P5- P6-P7 | (0.7/3)            | N5        | (6/1)      |
| P8-P9     | (0.7/3)            | N6        | (6/1)      |
|           |                    | N7- N8    | (5/0.4)    |
| C         | 80.66 fF           | N9        | (4.7/3.8)  |
|           |                    | N10       | (5/0.4)    |
| dntub_1   | 107.1 µm x 30 µm   | N11       | (1/8.9)    |
| dntub_2   | 36.9 µm x 30 µm    | N12-N13   | (6/1)      |
| dntub_3   | 46 µm x 30 µm      | N14       | (1.85/3.8) |
| dptub_1   | 64.3 μm x 16.65 μm | N15       | (0.9/3.9)  |
|           |                    | N16-N17   | (5/0.4)    |
|           |                    | NA-NB     | (1/0.4)    |

Table XXVIII Values of components of one pixel (without comparator) from the standalone CMOS matrix.



Fig. 26 Schematic of the CMOS comparator. It is included in the standalone readout digital part, and not in the pixel area.

| Component | Value     | Component | Value   |
|-----------|-----------|-----------|---------|
| P8        | (1/0.5)   | N18       | (5/0.4) |
| P9        | (1.6/2)   | N19       | (5/0.4) |
| P10       | (1.6/2)   | N20       | (6/1)   |
| P11       | (1.6/2)   | N21       | (5/0.4) |
| P12       | (0.7/0.8) | N22       | (6/1)   |
| P13       | (1.6/2)   | N23       | (6/1)   |
|           |           | N24       | (6/1)   |
| С         | 137.13 fF | N25       | (6/1)   |

Table XXIX Values of components from the CMOS comparator.

| 8.2. | Pixel | power, | input and | configuration | signals |
|------|-------|--------|-----------|---------------|---------|
|------|-------|--------|-----------|---------------|---------|

| Power name | Value    | Input name | Value      | Output name | Value |
|------------|----------|------------|------------|-------------|-------|
| nCascGND   | 0.4 V    | nBLPix     | 1.5 V      | BLRes       | 1     |
| gnda       | 0 V      | BLRPix     | Bias block | BLResDig    | 1     |
| gndd       | 0 V      | EnCCPD     | vdda       | NAmp        | 30    |
| HV         | < - 50 V | EnTest     | gnda       | NBiasRes    | 1     |
| vdda       | 3.3 V    | Inj        |            | NcompDig    | 30    |
| vddd       | 3.3 V    | InjEn      | vdda       | NDelDig     | 10    |
| vssa       | 2.0 V    | InjEnB     | gnda       | NFB         | 5     |
| VSensBias  | 3.3 V    | nVGatePix  | 3.3 V      | NFoll       | 50    |
|            |          | VNPix      | Bias block | NLogic      | 40    |
|            |          | VNBias     | Bias block | NTrim1      | 10    |
|            |          | VNFB       | Bias block | NTw         | 15    |
|            |          | VNLogic    | Bias block | NTwDown     | 30    |
|            |          | VNSF       | Bias block | PDelDig     | 10    |
|            |          | VPLoad     | Bias block | PLoad       | 10    |
|            |          | VPLoadD    | VPLoad     | PTrimDig    | 10    |
|            |          | Test       | 3.3 V      | thr         | 32m   |
|            |          | ThPix      | BL         | VPAB        | 10    |

Table XXX Values of power and input/output signals of the standalone pixels with simple CMOS comparator.

## 8.3. Pixel layout



Fig. 27 Layout of one pixel from the standalone CMOS matrix.

# 9. Standalone readout digital block

The H35DEMO chip includes two standalone matrices, nMOS and CMOS. The size of these matrices, the pixel geometry, the number of pixels and how are read out are the same for both of them. The differences are on the pixel electronics. This section describes first the standalone common circuits and operation. At the end of the section, the differences between both matrices are described.

#### 9.1. General overview

The standalone digital circuit purpose is to generate the time stamp and address of each hit pixel of a matrix of 4800 pixels and send that information off chip. For such a purpose the circuit is divided into 4 main regions as shown in the block diagram of figure 28. These are:

- Matrix of pixels
- ReadOut Cells (ROC)
- End Of Column cells (EOC)
- Control Unit (CU)

A standalone matrix includes two pixel matrices of 16 rows per 300 columns each, Left (L) matrix and Right (R) matrix. The analog output of each pixel is connected to a ROC cell. The purpose of this cell is to detect if there is a hit or not in a bunch crossing. A discriminator inside the cell checks if the analog output of the pixel is above a threshold voltage. In case of hit, the time stamp is stored into an 8 bits RAM memory. The address of the ROC cell is stored into an 8 bit ROM memory. The ROC cell at the bottom of the column has the lower address. The ROC cells are arranged in columns of 40 cells forming two groups of 60 columns. One is connected to the L matrix and the other one to the R matrix. Each readout column is connected to 2.5 columns of pixels.



Fig. 28 Block diagram of a standalone matrix.

Every ROC in a column is connected to a time stamp and address bus. It includes a priority AND-OR circuit in order to avoid conflicts when accessing to the buses so that only one of the cells in a column

can access the bus at a time. The hit cell with the largest address has the largest priority so columns are read out from top to bottom. The address and time stamp bus of each column goes to an end of column cell. Its function is to sample the address and time stamp and then to pass those values in parallel to the next EOC cell. The EOC cells are connected in series forming two large 16 bits parallel shift register of 60 cells each. Data moves from the right to the left. Every clock cycle, each register sends a time stamp and address in parallel to the control unit, which samples and serializes those values. Data are transmitted with a clock 8 times faster than the clock of the registers.

#### 9.1.1. Standalone matrices differences

The main difference between the nMOS and CMOS matrices are the pixel electronics. The pixels of the nMOS matrix are divided into two categories. Pixels from columns 0 to 149 include a CSA plus an nMOS discriminator. The threshold voltage is set with the global signal ThPix. Pixels from columns 150 up to 299 include a CSA plus an nMOS discriminator with time-walk compensation. In this case 2 threshold voltages are need, ThPix and ThTwPix (see figures 11, 12 and 13). The threshold level of the ROC discriminators is set with the global signal Th. The pixels of the CMOS matrix include a CSA and a second amplifier instead of a discriminator. But in this case there is a difference in the ROC cells. The ROC of matrix R includes 2 discriminators instead of 1. The threshold voltage is fixed with Th and ThTw. The name of the second threshold voltage, ThTw, is confusing. During the design of the chip, the same name in the nMOS matrix was reused for the CMOS matrix but it does not mean that the CMOS pixels have an nMOS discriminator with time-walk compensation in the pixel.

#### 9.2. Operation

The control unit is responsible for generating the global time stamp, handling the EOC and ROC cells and transmitting the time stamp and address of each hit pixel. There is a specific circuit for each feature as shown in the block diagram of figure 29. All blocks are synchronous and operate with an external clock FastCk or with an internal one, RoCk, generated by the external clock with a clock divider. The RoCk is 8 times slower than the FastCk. The control unit has a clock tree so FastCk has a latency. Hence, all circuits operate with a delayed clock FastCkInt.

The control unit generates a global 8 bits gray encoded time stamp TSRAM. It can be configured to operate at a quarter of the FastCk frequency or at an eighth of FastCk through the 4th bit of the configuration register ConfigBit[3]. The time stamp can also by divided in two time stamps of 4 bits each. For that, the 7th bit of the configuration register, ConfigBit[6], is used. This option is only used by the CMOS matrix with two discriminators. In this matrix it is necessary to store two time stamps of 4 bits, one for each discriminator.

The synchronous logic block generates a sequence of control signals to read out the data stored in the readout cells: Ld, PullDN, Rd and ParEn. This sequence is shown in figure 30. Note that the sequence lasts 60 RoCk clock cycles, that is, the length of one of the shift registers. During the sequence 4 events occur. First, the hit of the pixel with higher priority is validated (Ld asserted). Then, the address and time stamp of each hit pixel in a column are prepared to be stored in the corresponding EOC (PullDN and Rd asserted). Finally, the addresses and time stamps are stored (ParEn asserted). During each clock cycle, data is shifted so that at the first clock of the sequence the address and time stamp of the first column are passed to the control unit. At the next clock cycle, the address and time stamp of the second column are sent to the control unit, and so on. The control sequence can be restarted with the external reset signal SyRes, which also resets the time stamp. It is active high and must be asserted during a FastCk clock cycles. SyRes goes through two flip-flops D

to avoid metastabilities<sup>8</sup>. The sequence starts to be generated (5+2) FastCk clock cycles after deasserting the SyRes signal.







Fig. 30 Sequence of control signals to read out the data stored in the readout cells.

<sup>&</sup>lt;sup>8</sup> In fact, SyRes is synchronous with FastCk and hence with the on-chip logic. Nevertheless, there is a clock tree inside the chip so there is a latency. The synchronizers were included for safety.

The control unit receives an 8 bit address and time stamp from each shift register: AddrR, TSR, AddrL and TSL. The data is first stored temporally into a register and then sent to a serializer. The data is transmitted in series. The process takes 8 FastCk clock cycles and then a new sample is stored and serialized.

The serializers start transmitting correct data after 421 FastCk clock after deasserting the SyRes signal. This value is correct for slow and moderate clock frequencies (< 50 MHz). For frequencies of 320 MHz, this value must be changed to 422. The internal clock tree has a latency that causes this. Note that the clock tree latency introduces a phase shift between the external clock signal and any synchronous signal generated by the H35DEMO. Therefore, it is recommended to work at low clock frequencies to avoid such issues. At higher frequencies these issues need to be taken into account.

#### 9.3. I/O signals

The digital part standalone matrices are handled through two groups of control signals: main and auxiliary signals. The main signals are used to read data out. These are FastCk, SyRes, AddrR, TSR, AddrL and TSL. All these signals are LVDS. For simplicity, all main signals are depicted in the figures as single and not differential. The auxiliary signals are used to monitor the correct operation of the digital part of the standalone matrices and to bypass the control unit. Figure 31 shows a block diagram of the auxiliary signals and how they can be configured. The TSRAM, RoCk, Ld, PullDN, Rd and ParEn signals generated by the control unit can be probed by asserting the 5th bit of the configuration register ConfigBit[4]. These signals can be bypassed and use some externals by asserting the 3th bit of the configuration register ConfigBit[3].



Fig. 31 Block diagram of the digital I/O signals of a standalone matrix.

# 10. Bias block

- The bias voltages for the current sources are generated by 17 on-chip 6-bit DACs.

- Bits DAC#(5:0) control one DAC with bit 5 connected to MSB. Each DAC register segment (7 bits) has one spare bit.

- Each DAC is written using a shift register.

- To write a DAC, the signals SIN, Ck1, Ck2 and Load are needed (see Fig. 32). After Load is issued, the content of the shift register is stored in the latches. There is one latch memory cell attached to each bit of the shift register. The outputs of the latches are connected to the circuits.

- It is also possible to implement read back. For this, an additional signal ShiftEnB is needed. This works in the analog matrices only, as ShiftEnB is connected to gnda! in the standalone matrices.

- Each matrix has its own bias block. The 4 bias blocks in the chip are identical.





Fig. 33 Block diagram of *BiasBlock2*.

| Generated by | Signal name             | nMOS                                                                                                     | ANA1          | ANA2                                                                                                     | CMOS                |
|--------------|-------------------------|----------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------|---------------------|
| DACOut<0>    | VNHBdig/<br>VPHBdig     | VNHBdig/<br>VPHBdig                                                                                      | NC/<br>NC     | NC/<br>NC                                                                                                | VNHBdig/<br>VPHBdig |
| DACOut<1>    | VPDelDigital            | VPDel                                                                                                    | NC            | NC                                                                                                       | VPDel               |
| DACOut<2>    | VNDelDigital            | VNDel                                                                                                    | NC            | NC                                                                                                       | VNDel               |
| DACOut<3>    | VPTrimDigital           | VPTrim                                                                                                   | NC            | NC                                                                                                       | VPTrim              |
| DACOut<4>    | VNCompDigital           | VNComp                                                                                                   | NC            | NC                                                                                                       | VNComp              |
| DACOut<5>    | VBLResDigital           | BLR                                                                                                      | NC            | NC                                                                                                       | BLR                 |
| DACOut<6>    | VBLRes                  | BLRpix                                                                                                   | BLR           | BLR                                                                                                      | BLRpix              |
| DACOut<7>    | VPBiasRes/<br>VNBiasRes | NC/<br>VNBiasPix                                                                                         | NC/<br>VNBias | NC/<br>VNBias                                                                                            | NC/<br>VNBiasPix    |
| DACOut<8>    | VNFB                    | VNFBPix                                                                                                  | VNFB          | VNFB                                                                                                     | VNFBPix             |
| DACOut<9>    | VPTrim                  | VPTrimPix                                                                                                | NC            | NC                                                                                                       | NC                  |
| DACOut<10>   | VNTWDown                | VNTwDownPix                                                                                              | NC            | NC                                                                                                       | NC                  |
| DACOut<11>   | VNTW                    | VNTwPix                                                                                                  | NC            | NC                                                                                                       | NC                  |
| DACOut<12>   | VNLogic                 | VNLogicPix                                                                                               | VNLogic       | VNLogic                                                                                                  | VNLogicPix          |
| DACOut<13>   | VPLoadAmp               | VPLoadPix                                                                                                | VPLoad        | VPLoad                                                                                                   | VPLoadPix           |
| DACOut<14>   | VNSF                    | VNSFPix                                                                                                  | VNSF          | VNSF                                                                                                     | VNSFPix             |
| DACOut<15>   | VPAmp/<br>VNAmp         | NC/<br>VNPix                                                                                             | VP/<br>NC     | NC/<br>VN                                                                                                | NC/<br>VNPix        |
| DACOut<16>   | VPAB/<br>VNHB           | VPABPix/<br>NC                                                                                           | VPAB/<br>NC   | VPAB/<br>NC                                                                                              | VPABPix/<br>NC      |
|              | BLPix                   | NC                                                                                                       | BL            | BL                                                                                                       | NC                  |
|              | drainNMOSCirc           | NC                                                                                                       | NC            | NC                                                                                                       | NC                  |
|              | drainNMOSLin            | NC                                                                                                       | NC            | NC                                                                                                       | NC                  |
|              | drainPMOS               | NC                                                                                                       | NC            | NC                                                                                                       | NC                  |
|              | SerOut                  | SerOutBias                                                                                               | SerOutBias    | SerOutBias                                                                                               | SerOutBias          |
|              | Spare<0:16>             | <1>=BufferEn<br><2>=ExtCnt<br><3>=SelSlowTS<br><4>=BufferEn<br><5>=EnCCPD<br><6>=Sel4Bits<br><7>=SyncGen | <5>=EnCCPD    | <1>=BufferEn<br><2>=ExtCnt<br><3>=SelSlowTS<br><4>=BufferEn<br><5>=EnCCPD<br><6>=Sel4Bits<br><7>=SyncGen | <5>=EnCCPD          |
|              | SpareB<0:16>            | NC                                                                                                       | NC            | NC                                                                                                       | NC                  |
|              | TestGate                | NC                                                                                                       | NC            | NC                                                                                                       | NC                  |
|              | ThPix                   | NC                                                                                                       | Th            | Th                                                                                                       | NC                  |
|              | VCascPMOS               | VCascPMOS                                                                                                | VCascPMOS     | VCascPMOS                                                                                                | VCascPMOS           |





Fig. 34 Block diagram of LAY\_DAC. In each bias block, there are seventeen LAY\_DAC cells.



Fig. 35 Block diagram of DAC\_RegBit.



Fig. 36 Block diagram of DIG\_MUX\_lay.



Fig. 37 Block diagram of *mDac*. In *mDac*, the first block is composed of one *mDacCell*; the second block, two *mDacCells*; the third block, four *mDacCells*; and so on until the sixth block, which is composed of thirty-two *mDacCells*.



Fig. 38 Schematic of mDacCell.



Fig. 39 Block diagram of *DIO2\_VNBiasRes*. The other *DIO2\_xxx* circuits present a similar scheme, but not necessarily the same.



Fig. 40 Block diagram of DIO2\_CurrDivider\_RH.

- For testing purposes, some of the outputs of the bias block are connected to monitor pads through the circuit BiasPadsSwitches. This circuit contains one CMOS transmission gate per signal that we can monitor. It is controlled by the signals ConnBiasPads (to matrices ANA1, ANA2 and CMOS)/nConnBiasPads (to matrix nMOS) and ConnBiasPadsB (to matrices ANA1, ANA2 and CMOS)/nConnBiasPadsB (to matrix nMOS). Although the control signals to monitor the matrices ANA1, ANA2 and CMOS have the same names, there 2 different physical pads for each matrix (see table V and table X). When <ConnBiasPads,ConnBiasPadsB>=<0,1> (or when <nConnBiasPads,nConnBiasPadsB>=<0,1>), the signals BiasPAD<x> (or nBiasPAD<X>) are in high impedance. Alternatively, when <ConnBiasPads,ConnBiasPadsB>=<1,0> (or when <nConnBiasPads,nConnBiasPadsB>=<1,0>), when can monitor the signals BiasPAD<x> (or nBiasPAD<X>).

| Chip output  | nMOS          | ANA1         | ANA2         | CMOS          |
|--------------|---------------|--------------|--------------|---------------|
| BiasPAD<0>   | VNSFPix       | VNSF         | VNSF         | VNSFPix       |
| BiasPAD<1>   | VPLoadPix     | VPLoad       | VPLoad       | VPLoadPix     |
| BiasPAD<2>   | VNFBPix       | VNFB         | VNFB         | VNFBPix       |
| BiasPAD<3>   | VNBiasPix     | VNBias       | VNBias       | VNBiasPix     |
| BiasPAD<4>   | VNPix         | VP           | VN           | VNPix         |
| BiasPAD<5>   | BLRPix        | BLR          | BLR          | BLRPix        |
| BiasPAD<6>   | VNLogicPix    | VNLogic      | VNLogic      | VNLogicPix    |
| BiasPAD<7>   | VPABPix       | VPAB         | VPAB         | VPABPix       |
| BiasPAD<8>   | noVPTrimPix   | noVPTrim     | noVPTrim     | noVPTrimPix   |
| BiasPAD<9>   | noVNTwDownPix | noVNTwDonPix | noVNTwDonPix | noVNTwDownPix |
| BiasPAD<10>  | noVNTwPix     | noVNTwPix    | noVNTwPix    | noVNTwPix     |
| BiasPAD<11>  | VNDel         | noVNDel      | noVNDel      | VNDel         |
| BiasPAD<12>  | VPDel         | noVPDel      | noVPDel      | VPDel         |
| BiasPAD<13>  | VPTrim        | noVPTrim     | noVPTrim     | VPTrim        |
| BiasPAD<14>  | VNComp        | noVNComp     | noVNComp     | VNComp        |
| BiasPAD <15> | BLR           | noBLR        | noBLR        | BLR           |

Table XXXII Monitor pads with their corresponding signals from *BiasBlock2*.



Fig. 41 Layout of the bias block with pads on the left hand side for reference.

# 11. Configuration registers

- The configuration register consists of the following:
  - DAC register
  - Horizontal control register
  - Vertical control register
  - Digital horizontal control register (in the standalone matrices only)

#### 11.1. Horizontal control register

- For each pixel, 4 bits are needed. These enable:

- Bit 1. Injection in the corresponding row.
- Bit 2. Test measurement.
- Bit 3. Amplifier output measurement.

- Bit 4. To load the RAM bits in the corresponding row in the case of pixels with comparators. In analog pixels, the fourth bit is not necessary.



Fig. 42 Block diagram of the horizontal control circuit. In each matrix there is one of these circuits per row, i.e., HorControl<x> with 0<x<22. SIN in HorControl <0> is SerOutBias generated by the bias block. SOUT in HorControl <0> is connected to SIN in HorControl <1>, SOUT in HorControl <1> is connected to SIN in HorControl <2>, etc. SOUT in HorControl <22> is named SOUT1 and connected to SIN in the vertical control circuit.



Fig. 43 Schematic of PixelDigABuffHor.



Fig. 44 Block diagram of ConfigBit2Phase.



Fig. 45 Block diagram of ConfigBit2PhaseNOR.



Fig. 46 Block diagram of LATCHD. /Ck1 and /Ck2 are generated in LATCHD with two inverters connected to Ck1 and Ck2, respectively.



Fig. 47 Block diagram of FFD.

#### 11.2. Vertical control register

- For each row, 4 bits are needed. These enable:

- Bit 1. Calibration of the analog buffer (source follower) by connecting the injection signal (externally generated) to its input.

- Bit 2. Connection between the analog buffer and the test line. The test line is connected to the bump bond pad by the corresponding horizontal control register.

- Bit 3. Vertical injection line by connecting it to the externally generated injection pulse.

- Bits 3 and 4. Writing the pixel 2-bit RAM. They are connected to RAM inputs. The RAM cell is written by issuing bit 4 in the horizontal register part.



**Fig. 48** Block diagram of the vertical control circuit. In each matrix there is one of these circuits per column, i.e., VerControl<x> with 0<x<299. SIN in VerControl<0> is SOUT1 from HorControl<22>; SIN<x> with 0<x<299 is SOUT1, si2<1:299>. SOUT in VerControl<299> is an output of the matrix at the ASIC level; SOUT<x> with 0<x<299 is si2<1:299>, SOUT. There are 300 signals Inj and Test. There are 100 signals Monitor<0:2>.



Fig. 49 Schematic of PixelDigABuff.

#### 11.3. Digital horizontal control register



Fig. 50 Top of HorControlDIGITAL used to control the digital block.



Fig. 51 Block diagram of HorControlDIGITAL.

# 12. Test structures

#### 12.1. Circuit to measure the sensor capacitance

We have six different circuits, with the same electronics but different sensor features. From right to left, (i.e., from TS\_U0 to TS\_U33) these circuits are:

- Dio\_Cap\_meas\_NoSegmentedNoGR\_PAD. The sensor is made of one big DNTUB without DPTUB.

- *Dio\_Cap\_meas\_SegmentedNoGR\_PAD*. The sensor is made of four small DNTUBs without DPTUB between them.

- *Dio\_Cap\_meas\_Segmented\_PAD*. The sensor is made of four small DNTUBs with DPTUB between them.

- *Dio\_Cap\_meas\_circ\_nMOS\_comparator\_with\_TW\_pad\_ring*. The sensor has the same features as in the pixel with an nMOS comparator and without time-walk compensation (standalone nMOS matrix).

- *Dio\_Cap\_meas\_circ\_nMOS\_comparator\_no\_TW\_pad\_ring*. The sensor has the same features as in the pixel with an nMOS comparator and with time-walk compensation (standalone nMOS matrix).

- *Dio\_Cap\_meas\_circ\_nMOS \_pad\_ring*. The sensor has the same features as in the analog pixel in the analog matrices and the analog pixel for standalone readout in the standalone CMOS matrix. There is no additional DPTUB between the different DNTUBs that make the sensor.



Fig. 52 Schematic of the circuit to measure the sensor capacitance. VHI is vdda! and VLow is gnda!. ConnHi and ConnLow are square voltage signals with a small delay between them. By measuring the current that flows through P0 and/or N0, we can measure the capacitance of the diode.

| Component | Value    | Component | Value   |
|-----------|----------|-----------|---------|
| P0        | (2/0.35) | N0        | (5/0.4) |

Table XXXIII Values of components of the test structure to measure the sensor capacitance.

| Circuit                                            | DNTUB area (µm <sup>2</sup> )      | DPTUB area (µm <sup>2</sup> ) |
|----------------------------------------------------|------------------------------------|-------------------------------|
| Dio_Cap_meas_NoSegmentedNoGR_PAD                   | 30 x 230                           | 0                             |
| Dio_Cap_meas_SegmentedNoGR_PAD                     | 4 x 30 x 42.5                      | 0                             |
| Dio_Cap_meas_Segmented_PAD                         | 4 x 30 x 42.5                      | 0(*)                          |
| Dio_Cap_meas_circ_nMOS_comparator_with_TW_pad_ring | 30 x 231                           | 16.65 x 55 +<br>17.1 x 109    |
| Dio_Cap_meas_circ_nMOS_comparator_no_TW_pad_ring   | 30 x 231                           | 16.65 x 55 +<br>17.1 x 57.75  |
| Dio_Cap_meas_circ_nMOS _pad_ring                   | 30 x 50 +<br>30 x 103 +<br>30 x 37 | 16.65 x 64.55                 |

**Table XXXIV** Values of components of one pixel (without comparator) from the standalone nMOS matrix. <sup>(\*)</sup> There's DPTUB only between the different DNTUBs that make the sensor, but only to apply the HV.



Fig. 53 Transient simulation of circuit to measure the sensor capacitance.

#### 12.2. Circuit for fast measurements



**Fig. 54** Schematic of circuit for fast measurements. It is a matrix of 3 x 3 diodes and there is DPTUB between the sensors to apply the HV. DioBias is vdda!, VHi can be connected to 3.3 V and DioIn is connected to an external low value resistor (i.e., 10  $\Omega$ ). The current that flows through DioIn can be as high as 100 mA (maximum). The fall time in DioIn upon particle hit/light detection should be extremely fast (< 1 ns, according to simulations).

| Component | Value    | Component Value  |                    |
|-----------|----------|------------------|--------------------|
| P0        | (20/0.4) | <b>NO</b> (10/1) |                    |
|           |          | dntub1           | 76 µm x 176 µm     |
|           |          | dntub2           | 8 x 76 µm x 176 µm |

Table XXXV Values of components of test structure for fast measurements.





#### 12.3. Circuit for sensor measurement without electronics



Fig. 56 Schematic of circuit for measurements without electronics. It is a matrix of 3 x 3 diodes. The diode connected to Dioln is placed at the middle of the matrix. PW is connected to gnda!, Dioln should be connected to 3.3 V and DioOut is the output of the circuit.

| Component | Value                  |
|-----------|------------------------|
| dptub1    | 16.65 µm x 53.3 µm     |
| dntub1    | 30 µm x 90 µm +        |
| dotub2    | 8 x 16 65 µm x 53 3 µm |
|           | 8 x 30 µm x 90 µm +    |
| dntub2    | 16 x 30 µm x 50 µm     |

 Table XXXVI Values of components of test structure without electronics.

Fig. 57 Layout of circuit for measurements without electronics.