

novel neutrino detection

University Liverpool (UK)

May 2019

Anatael Cabrera

CNRS/IN2P3 LAL@Orsay LNCA@Chooz

what is LiquidO?

LiquidO is both...

Liquid = new detection framework (liquid scintillator based)

LiquidO = collaboration⊕cooperation team (physics ↔ demonstration⊕R&D)

~45 scientists ⊕ ~20 institutions ⊕ ~10 countries [Brasil, Canada, Chile, China, France, Germany, Italy, Japan, Spain, USA, UK]

3

LiquidO: ensuring correctness...

today's technology...

"A long time ago in a galaxy far, far away..."

Reines & Cowan (et al) around 1950

discover the neutrino (upon 1930's Pauli's hypothesis) [Nobel prize 1995]

pave much of today's technological ground [even ~70 years later, dominant today]

the v discovery (1950's)...

ic

inverse- β decay (IBD) interaction...

IBD: anti- $v_e + p \rightarrow e^+ + n$

no e+ PID implies $\mathbf{\gamma} \approx \mathbf{e}^{-} \approx \mathbf{e}^{+} \approx \mathbf{\alpha} \approx \mathbf{p}$ -recoil (fast-n)

Reines&Cowan pioneering detection...

Cd loading on liquid scintillator

Anatael Cabrera (CNRS-IN2P3 & APC)

Reines& Cowan powerful coincidence (IBD)...

e+ annihilation (2x 0.511MeV)

10

n-Cd capture (~9MeV)

Neutron scope

Reines&Cowan detection strategy...

PMT \Leftrightarrow transparent medium interaction coincidence and/or tagging overburden (µ-cosmic shielding) **external shielding** (radioactivity shielding) **loaded medium** (13Cd) \rightarrow non-native detection! (reactor source) **modulation ON vs OFF**

11

~70years ago similar to today!

Anatael Cabrera (CNRS-IN2P3 & APC)

switch off the source for a while?

(the dream of solar-v physicist)

Double Chooz reactor-OFF: signal analysis...

rate(I reactor) \approx 3 IBDs/min

13

Reines & Cowan detector (300kg)...

today's inspiration!

Anatael Cabrera (CNRS-IN2P3 & APC)

today's version of similar technology...

15

Far detector

2 identical detectors

Near detector

Anatael Cabrera (CNRS-IN2P3 & APC)

Double Chooz @ LNCA (Chooz)

(Buffer: ~100 ton)

(most) exquisite radio-purity...

Borexino (GS)

17

large (Ikton)...

NOTE: KamLAND similar size but balloon

SNO+

Super-Kamiokande (50kton)

~50m

Super-KamiokaNDE @ Japan (Nobel prize 2015)

~14,000 PMTs (20'' diameter)

neutrino detection \leftrightarrow art of transparency

[Reines&Cowan since 50's]

why LiquidO is needed...

liquid scintillator state of the art...
"perfection" since Reines&Cowan...
exquisite radio-purity
scintillation PSD→ 'some' PID

at the expense...
buffer volume (PMT radioactivity)
topological event-wise PID?
[this talk]

$PMT(\sim lns) \Leftrightarrow Transparency \implies PLD?$

an **Opaque** solution to PID...?

a shielding story...

today's detector strategy in a nut-shell...

shield breakdown...

- •**rock** (many meters→kilometres) [cosmogenic]
- •veto detector (active) [cosmogenic & radiogenic]
- •**buffer shield (passive)** [radiogenic mainly]
- •neutrino detector (active)
 [radiogenic mainly→self-shielding]

transparent limitation: ⇒ little self-shielding→little PID!! [ex: e+≈e-≈γ: no event-wise ID so far]

tracking capability...

µ-track→cosmogenic tracing
[reduce and/or understand cosmogenic]

transparent limitation: \Rightarrow no native <u>track topology</u>!!

"µ" \approx light "blast" \oplus entry/exit points

today's technology is much about shielding (active and/or passive)

overburden: up to several kilometres

(if new facility: large construction cost)

(typically) ≥half excavated volume "wasted" (→shields)

(buffer very precious/expensive volume since fully instrumented)

why limited self-shielding?

e+ PID limitation (illustration)...

up to here e- ~ e+

pattern \rightarrow e⁺ \neq e⁻

e+ (@ few MeV**)**_Y

traditional liquid scintillator detectorack up to ~100MeV)

(no much info \Rightarrow heavy shielding & underground)

Iarge dE/dx upon stopping (→ Bragg peak)

Compton Scattering

powerful event pattern washed out \Rightarrow hardly any ID!

why "poor" event-wise PID?

no event-wise PID (beyond PSD) $\gamma \approx e^- \approx e^+ \approx \alpha \approx p$ -recoil (fast-n)

PMT ↔ medium **transparency** → **little PID**

↓ σ(time)≈lns ⇔ σ(space)≈20cm [unresolvable] ↓

 σ (vertex) \approx 10cm ["center of mass vertex" regardless of particle]

liquid→(easy) loading BUT risks transparency!!

PMT (precious technology from 30's)...

but

• slow (TTS≥Ins/PE) [SiPM: 0.1ns/PE]

•low-ish QE (≤30%) [SiPM: ≤60%]

• PMT photocathode radioactive!! [buffer $\rightarrow \geq 50\%$ volume lost]

Reines & Cowan used their 50's state of the art: **scintillation PMT's**

true still today? (beyond vintage)

let's dream what we want...

³⁴ hypothesise a **O(Icm) resolution** detector...

scintillator/water very low-Z material with lots of "stable" H

dE/dx→ Bragg peak (e- starts as MIP)

e-, α and p are scintillation quenched \rightarrow PSD is possible!

Y (gamma ray)

@ few MeV→ Compton scattering

(ended by photon-electric effect)

hybrid-like event

LiquidO...

LiquidO: the detection principle...

confine energy deposition locally → freeze information

readout: wave-shifting-fibres⊕SiPM's

PMTs → become useless (unreachable light)
must confine light locally... how?

known light confinement strategies...

gravitational confinement stochastic confinement (ex. a black hole) (ex. random walk)

light position restricted (both cases)

LiquidO recipe: just "bread & butter" physics...

39

today's technology

LiquidO technology

light ball size: scattering⊕fibres (sampling optimisation)

like this? (Ireland)

GUINNESS

Liquid \oplus Opaque

liquid~wax behaviour

in reality, more like this...

wax random (amorphous) structure...

LiquidO implies ("theorem")...

''milky" / ''cloudy" / ''waxy" scintillator (gas↔liquid↔solid)

a LiquidO detector...

simplest LiquidO design: 2D time...

(x,y) info [lattice ξ]→ image pixelation (up to ~lcm)
 (z) info [along fibre]→ time difference (up to cm's) (also z-pixelation possible→ envisaged for R&D)

image: multi-wire chamber (principle by G. Charpak @ CERN)

LiquidO ≈ "TPC-like" drifting light [highest possible duty-cycle]

drifting (the fastest) photons instead of (slow) electrons [traditional TPC]

detector articulation & readout...

"infinitesimal" fibres→ MeV calorimetry (reduce non-stochastic terms)

light readout via "collectors"...

48

(fastest) SiPM electronics readout...

our digitisation electronics.

(expected) time resolution: $\leq 100 \text{ps/PE}$ (i.e. $\leq 3 \text{cm/PE}$ @ speed of light)

IEEE NSS (2014): The SAMPIC Waveform and Time to Digital Converter NIM paper (2016): Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC Waveform Digitizer

(instrumentation-wise)

51

LiquidO \approx "light" TPC \oplus 4 π -ToF

stunning event pattern...

why opacity? [up to now the death of LS]

stochastic light confinement (few cm's) → powerful energy pattern (PID)

•slow down speed of light $(\sim 1/10x) \rightarrow$ energy flow & causality [next]

•maximal light collection (\geq 90%) \rightarrow light level up to \leq 400PE/MeV? [R&D]

MC says LiquidO works!!

[bread-&-butter physics]

LiquidO's multi-axes...

LiquidO

up to 3 axes (unlike drift-TPC)→**needed**?

Transparent Scintillator • Fibres

a few 100KeV e+ now looks like this...

55

powerful PID expected...

2MeV

no need for segmentation -> problematic! (cost/complex) (opacity -> self-segmented)

CC v interaction observables...

a breakthrough capability $\leq 100 \text{MeV}$ (\rightarrow only possible with ν_{μ} 's so far)

57

event topology...

LiquidO resolution (translucide medium)

I MeV Electron

10 MeV Electron

effective point (Bragg peak dominated)

effective track (MIP dominated)

NOTE: traditional liquid scintillator: poor vertex resolution (~10cm @ 1MeV) & no tracking!!

a through-going μ ...

track \approx "infinite" sequence of point (MIP: average @ ~2MeV/cm) (no μ saturation \rightarrow light confined locally \rightarrow no deadtime upon each μ !!) Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

how about after readout...

Liquid \bigcirc \oplus readout (today's technology) effect.

NOTE: SiPM cooling under consideration→better than here shown

detection photons→reduce information

[technology dependent: conservative assumption]

readout dark-noise (LiquidO light confinement <u>critical</u>)

Opaque scintillator→ new technology! (so far only transparent considered)

beyond "just pattern"...

pattern = energy deposition as t \rightarrow \infty [static information: photo]

dynamic energy flow within few ns? [a film]

64

"straight" light covers Δx in a shorter Δt

v(light) effective slow down... ($v = \Delta x / \Delta t$)

dynamics: not just photos...

scattering→ relented effective speed of light ~10x [i.e. effective photon "viscosity"]

v(particle) ≠ v(light in scintillator) ≠ v(light in fibre) ["speed decoupling"]

LiquidO

Transparent

c defines "line of interaction causality"

critical control of all time-dispersion mechanism

LiquidO native tracking: even e-...

more complex events is better...

stopping μ^{\pm} (decay into Michel-e[±])

700MeV π⁰ (γγ decay) [MC]

(example) Y to e - separation...

$\mathsf{PID}(\mathsf{e}:\mathsf{Y}) @ 2\mathsf{MeV} \rightarrow \mathsf{major} \mathsf{Y} \mathsf{rejection} \dots$

72

 \geq 90% detection efficiency

PID[γ:e⁻] separation I:≤I0⁴ (scintillator native) I:≤I0² (heavy loaded)

not practical so far!!!
cannot boost v's cross-section!

how about making it large?

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

NOvA~IOk ton (scintillator⊕fibres⊕photo-detector)

SINGAPORE AIRLI

74

GeV might be OK!! BUT ~IMeV physics @ IOkton? (R&D) Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

radio-purity control?

 ✓ scintillator (ex. ✓ Borexino)
 ⊕
 ✓ photo-detector outside! [no PMT→no buffer]
 ⊕
 ? fibres→R&D (ex. ✓ GERDA) (under further study)

only natural radio-activity

GERDA's fibre curtain...

fibres are rather ok!! good enough? (under estimation)

✓ proof-of-principle simulation

indeed, **Opaque** seems **a solution**...! (<u>the</u> solution?)

LiquidO is still more!

dope it? non-native capability...

why going beyond native composition?

organic scintillator = H + ¹²C + ¹²C(~1%) [+ impurities]

isotopic mass: loading vs enrichment...

(beyond chemical stability)

doping stability via solidification...

cool! really? [we did too for long!]

upon novelties, always duality...

first proof-of-principle...

low energy e \approx "light ball"...

LiquidO means light confinement! (everything else→corollaries)

µ-LiquidO@ourebeam...

3x fibres: •fibre-0: 1.0cm •fibre-1: 2.5cm

•fibre-2: 4.0cm

µ-LiquidO inside...

~5cm tall (PMT face)

scintillator filled

2 scintillators

LAB (transparent)+3g/I PPO
new (LAB-based⊕opaque)
→polymer [10,20]% loading

Mylar (few µm's)

fibre only (example)

first experimental proof of principle...

light bending→light confinement! (data-driven reference — no need MC)

λ(scat) driven [consistent with negligible light loss @ 10% loading] Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

✓proof-of-principle experimental

packed lattice → data soon...

closed detector now (PMT window)

further prototyping effort...

a physics appetiser...

vast physics under study...

•geo-neutrino→ first ⁴⁰K detection? •reactor neutrino→ background-less detection? •CP-Violation via Ve & anti-Ve • **@MeV:** vacuum oscillation & low systematics? • **@GeV:** conventional beam & larger matter effects •solar neutrino → high precision & maybe pp? •supernova neutrino \rightarrow CC (v_e & anti- v_e) & NC detection? • \geq 10ton $\beta\beta$ detection? [much R&D still] •multi-channel proton-decay detection? •TeV collider calorimetry articulation? •applications: medical, non-proliferation, Radom detection [sorry, no time!]

physics potential...

(performance characterisation & scaling, etc)

[demonstration with v's]

NO "experiment" proposal (yet)

early July 2019

towards first experiment @ EPS...

97

tribute to Reines&Cowan

LiquidO(Cd) (example only)

back to (cool) reactor neutrino...

Chooz reactor (cooling tower)

larger detectors in same cavity?

more detection volume (same cost)...

101

Double Chooz: buffer (77%):detector(23%) wasted >2/3 equipped volume

(**buffer** is a <u>desperate option</u>, not a solution)

all other detectors (KamLAND, Borexino, etc) are just alike...

IBD: e+ (else background)...

2MeV

from Double Chooz to LiquidO...

cosmogenic rejection→ **PID(e+:e-)** ≥ **I00x** (conservatives)

accidentals rejection $\rightarrow \geq 100x$ [time \oplus space coincidence & PID(e+)]

"background-less" IBD detection?

physics beyond "IBD"?

less overburden?

either way: major impact!

what to remember...

"v demonstrator" detector NEXT STEP

data needed→towards physics experiments

✓ proof-of-principle (data & MC)

who knows?(!)

LiquidO?

transparent

s<mark>cint</mark>illator technology (Reines et al)

LiquidO in the roadmap?

LiquidO inherits ~80 years of technology/expertise (simplifies dramatically LiquidO R&D) LiquidO physics potential appears large!! several studies quantifying→publications soon!

first publication aiming within JUNE 2019

LiquidO detection technique \rightarrow proof-of-principle

(further prototyping ongoing)

detector performance optimisation→what physics? (experimental proposal(s) soon)
questions, please?

merci... ありがとう... danke... 고맙습니다... obrigado... Спасибо... grazie... 谢谢... hvala... gracias... ...شکرا thanks...

anatael@in2p3.fr

(always question) why people did not see before?

"blurring" (i.e. scattering) mechanism to yield "shaper" imagines (rather counter intuitive)

Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)