

Strangeness production from large to small systems

Dr. Francesca Bellini (CERN, Switzerland) University of Liverpool, 18th October 2018

Outline

----> Strangeness production

- ...+ in Quark Gluon Plasma
- ··· in hadronic gas
- ...+ from the perspective of pp modeling
- ---+ Experimental aspects
 - --- Strange hadron reconstruction with ALICE
 - ---+ Centrality and multiplicity in ALICE
- ---+ Evidence of strangeness enhancement in heavy-ion collisions
- ---> Strangeness enhancement in high-multiplicity pp and p-Pb

···**→**Outlook

Strangeness production

in Quark Gluon Plasma, in hadron gas, from the perspective of pp modeling

What is so special about the strange quark

Strange quarks are created during the collision

The hadronic cross section of (multi-)strange hadrons is small ---> carry information about production stages

The **s** quark is "light" (current mass)

*m*_u ≈ 2.2 MeV $m_{d} \approx 4.7 \text{ MeV} \vdash < \Lambda_{QCD} << m_{c} \approx 1.3 \text{ GeV}$ *m*_s≈96 MeV J

[C. Patrignani et al. (Particle Data Group), Chin. Phys. C. 40, 100001 (2016) and 2017 update]

Constituent light quarks masses are dominated by spontaneous breaking of chiral symmetry in QCD

Light quarks can recover their bare current masses if chiral symmetry is (partially) restored ---> near the QCD phase-transition boundary

The QCD phase transition (a very simplified picture)

A deconfined state of matter (Quark Gluon Plasma) can be reached by compressing the system to a high-density (ρ_B) and/or heating it up to a high-temperature (T) \rightarrow ultra-relativistic heavy-ion collisions

At the LHC: $\mu_{\rm B} \sim 0$, $\epsilon \sim 16 \text{ GeV/fm}^3 >> \epsilon_c \sim 1 \text{ GeV/fm}^3$

Strangeness production in QGP

~300 MeV (or less if $m_s^{QCD} \rightarrow m_s^{Higgs}$ by restoration of chiral symmetry) are enough to create an s-sbar pair

Gluon fusion (a) is the dominant mechanism for strangeness production over quark annihilation (b) Gluons quickly thermalise in t < 1 fm/c [E. Shuryak, Phys. Rev. Lett. 68 (1992) 3270]

relative to baryon number n_s/v 0.6 0.6 0.4 0.2 $1^{-300 \text{ MeV}}$ 1 = 6 fm/c 1^{-200} 1^{-200} 1^{-160} 1^{-23} 1^{-23} 1^{-23} 1^{-23} 1^{-23} 1^{-22} 1^{-22} 1^{-22}

Abundance of s quark

After hadronisation, the abundance of (multi)strange hadrons reflects that of strangeness in the partonic phase

- For short enough hadronic phase (no re-diffusion)
- for small hadronic cross sections

J. Rafelski, B. Müller, Phys. Rev. Lett. 48 (1982) 1066

In a hadron gas at high temperature (e.g. $T = 150 \text{ MeV} < T_c$), (multi-)strange hadron production is an energy threshold problem

By multi-step hadronic processes

e.g. $\pi + n \rightarrow K + \Lambda$, $E_{th} \sim 540 \text{ MeV}$ $\pi + \Lambda \rightarrow K + \Xi$, $E_{th} \sim 560 \text{ MeV}$ \longrightarrow Requires longer medium lifetime \longrightarrow under-saturation of strangeness

By direct production e.g. $\pi + \pi \rightarrow \pi + \pi + \Lambda + \Lambda$ -bar, $E_{th} \sim 2200 \text{ MeV}$ $\pi + \pi \rightarrow \pi + \pi + \Xi^- + \Xi^+$ -bar, $E_{th} \sim 2600$ MeV \longrightarrow have to happen very early \longrightarrow by non-thermalised hadrons

Less efficient than production in QGP

Harder to reach equilibrium

Strangeness from the pp modeling perspective

In the Lund string model [Sjostrand, Mrenna, Skands, JHEP 0605 (2016) 026, N. Fischer, T. Sjostrand, JHEP 1701 (2017) 140]

- Confined colour fields described as strings with tension $\kappa = 1$ GeV/fm
- Hadrons given by breaking of strings
- Strangeness production determined by (which?) m_s

$$\operatorname{Prob}(m_q^2, p_{\perp q}^2) \propto \exp\left(\frac{-\pi m_q^2}{\kappa}\right) \exp\left(\frac{-\pi p_{\perp q}^2}{\kappa}\right)$$

Measurements of strange hadron production used as input for tuning Monte Carlo generators

---> Contribute to the understanding of underlying event arising from multiparton interactions in pp, p-Pb collisions. [P. Skands et al., EPJC 76(5) (2016) 1-12]

J.R. Christiansen, P. Skands, JHEP 08 (2015) 003

In heavy-ion collisions: **thermal production** of strangeness at the QCD phase boundary ---> thermal properties of the medium

In pp collisions: **energy threshold and conservation** of (strangeness) quantum numbers ---> production mechanisms and underlying event

Experimental aspects

Strange hadron reconstruction with ALICE Centrality and multiplicity in ALICE

Experiments at the Large Hadron Collider

LHC collision energy √s _{NN} (TeV)		
System	Run I	Run II
рр	0.9, 2.76, 5.02, 7, 8	5, 13
p-Pb	5.02	5.02, 8.16
Pb-Pb	2.76	5.02
Xe-Xe	-	5.44

A Large Ion Collider Experiment at the LHC

a. ITS SPD (Pixel)b. ITS SDD (Drift)c. ITS SSD (Strip)d. V0 and T0

e. FMD

ITS, TPC: tracking, vertexing, hadron PID via dE/dx, $I\eta I < 0.9$, reconstruction of the decay topology of weakly-decaying (multi-)strange hadrons

TOF: hadron PID via Time-Of-Flight $|\eta| < 0.9$, $\sigma_{\text{TOF}} \sim 80$ ps

Strange and identified hadrons in ALICE

+ antiparticles + resonances (not today's topic...)

Multi-strange hadron reconstruction details

Centrality

Centrality = fraction of the total hadronic cross section of nucleus-nucleus collisions \rightarrow can be quantified by the impact parameter (b)

Centrality variables:

- N_{coll}, number of binary nucleon-nucleon collisions
- N_{part} (N_{wound}), number of participating (wounded) nucleons → energy available for particle production

Event classes in Pb-Pb, p-Pb, pp

Event multiplicity/centrality classes are defined based on the amplitude measured in the V0 scintillators, placed at forward rapidity: $2.8 < \eta < 5.1$ (V0A) and $-3.7 < \eta < -1.7$ (V0C)

 $\langle dN_{ch}/d\eta \rangle$ is measured in SPD in $|\eta| < 0.5$ to avoid "auto-correlation biases"

In Pb-Pb the Glauber* model is used to relate the VOA&VOC ("VOM") amplitude distribution to the geometry of the collision. [*M. L. Miller et al., An. Rev. Nucl. Part. Sci. 57 (2007) 205-243]

At $\sqrt{s_{NN}} = 2.76$ TeV:

0-5%: $\langle dN_{ch}/d\eta \rangle = 1601 \pm 60$ $\langle N_{part} \rangle = 328.8 \pm 3.1$

70-80%: $\langle dN_{ch}/d\eta \rangle = 35 \pm 2$ $\langle N_{part} \rangle = 15.8 \pm 0.6$

System size ⇔ charged particle multiplicity

Experimental evidence of strangeness enhancement in heavy-ion collisions

30 years of heavy-ion collision experiments

Fixed target experiments:

Bevalac @ LBL (1975-1986) $\sqrt{s} <2.4$ GeV SIS @ GSI (1989-) $\sqrt{s} <2.7$ GeV AGS @ BNL (1986-1998) $\sqrt{s} <5$ GeV SPS @ CERN (1986-2003) $\sqrt{s} <20$ GeV FAIR @ GSI (u.c.) $\sqrt{s} <9$ GeV

Collider experiments:

RHIC @ BNL (2000-) $\sqrt{s_{NN}} < 200 \text{ GeV}$ [beam energy scan $\sqrt{s_{NN}} = 7.7$, 11.5, 19.6, 27, 39, and 62.4 GeV] LHC @ CERN (Run I, 2009-2013) $\sqrt{s_{NN}}=2.76 \text{ TeV}$ LHC @ CERN (Run II, 2015-2018) $\sqrt{s_{NN}}=5.02 \text{ TeV}$

Observation of strangeness enhancement at SPS

Enhancement observed in Pb-Pb collisions wrt p-Pb, p-Pb for multi-strange (anti)baryons

- ---> Anti-baryons less enhanced than baryons ---> quarks (not anti-quarks!) in the initial stage
- ----> Hierarchy of the enhancement with the strangeness content
- ---> Increase of the enhancement with the centrality of the collision

From SPS to RHIC

STAR, Phys. Rev. C 77, 044908 (2008)

Enhancement observed also at RHIC

Smaller effect for higher collision energy

Multiplicity per N_{part} saturates earlier in AA than in pp

Strange quarks are more abundantly produced in nucleus-nucleus than in pp/pA collisions

Strangeness enhancement

[J. Rafelski and B. Muller, PRL 48 (1982) 1066]

Historically proposed as a first signature of the presence of a deconfined Quark Gluon Plasma where **strangeness is produced thermally** (mainly) by equilibrated gluons

Canonical suppression

[K. Redlich, A. Tounsi, Eur. Phys. J. C 24, 589–594 (2002)]

suppression of production due to canonical quantum number conservation law i.e. strangeness has to be conserved locally in a finite system

- ---> Reduced phase space available for particle production
- \rightarrow Relaxation of canonical suppression with increasing \sqrt{s} (and number of particles)

From RHIC to LHC

RHIC: $\sqrt{s_{NN}} = 200 \text{ GeV}$ LHC: $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

In **pp collisions** the production of strangeness relative to π at LHC is larger than at RHIC

---> crucial to understand the small system "reference"!

From pp to Pb-Pb strangeness production increases

For $N_{part} > 150$ the ratios saturate and match predictions from the grand-canonical statistical hadronisation models

In addition, a more recent fit with $T_{ch} = 156 \text{ MeV}...$

ALI-PUB-78357

Statistical hadronisation model in a nutshell

Thermal fits map heavy-ion collisions to the QCD phase diagram and allow for comparison with lattice-QCD

Conventional picture: (ideal) hadron-resonance gas model in **chemical equilibrium** (based on **Grand Canonical ensemble**)

$$n_i = N_i/V = -\frac{T}{V} \frac{\partial \ln Z_i}{\partial \mu} = \frac{g_i}{2\pi^2} \int_0^\infty \frac{p^2 \mathrm{d}p}{\exp[(E_i - \mu_i)/T] \pm 1}$$

- Measured particle yields (or ratios) are input to the fits
- Fit to yields: parameters $\mu_{\rm B}$, $T_{\rm ch}$, V
- Thermal model fit to yield ratio: V cancels out
- Fits based on minimization of χ^2
- Deviations from (GC) equilibrium through empirical under(over)-saturation parameters for strange, charm or light quarks (γ_s , γ_c , γ_q)

A. Andronic et al., Nature 561, 321 (2018) V. Vovchenko, LIGHT UP workshop 2018

Thermal model fit to Pb-Pb 2.76 TeV (0-10%)

Production of (most) light-flavour hadrons (and anti-nuclei) described (χ^2 /ndf ~ 2) by thermal models with a single chemical freeze-out temperature, T_{ch} ≈ 156 MeV

 \rightarrow Tensions between protons and multi-strange (tend to drive T_{ch} in opposite directions)

Figure from ALICE, Nucl. Phys. A 971 (2018) 1-20 THERMUS: Wheaton et al, Comput.Phys.Commun, 180 84 GSI-Heidelberg: Andronic et al, Phys. Lett. B 673 (2011) 142 SHARE: Petran et al, arXiv:1310.5108

Thermal model fit to Pb-Pb 5.02 TeV (0-10%)

Strange quarks are observed to be more abundantly produced in nucleus-nucleus than in pp/pA collisions ---> Strangeness enhancement in AA or canonical suppression in pp/pA?

In thermal model fits with a single chemical freeze-out temperature, some tension is observed between protons and strangeness Still open to interpretation!

Observation of strangeness enhancement in high-multiplicity pp, p-Pb collisions

Strange hadron p_T spectra - Multiplicity dependence

 $p_{\rm T}$ differential yields of strange and multi-strange measured in 10 multiplicity bins

 $\begin{cases} I \to \langle dN_{ch}/d\eta \rangle \approx 3.5 \times \langle dN_{ch}/d\eta \rangle^{\text{INEL}>0} \\ \vdots \\ X \to \langle dN_{ch}/d\eta \rangle \approx 0.4 \times \langle dN_{ch}/d\eta \rangle^{\text{INEL}>0} \\ & \left(\langle dN_{ch}/d\eta \rangle^{\text{INEL}>0} \approx 6.0 \right) \end{cases}$

Spectra harden towards higher multiplicity (as observed in p-Pb and Pb-Pb)

 $p_{\rm T}$ integrated yields extracted from measured points and extrapolation function at low $p_{\rm T}$ (dashed line = Lévy-Tsallis function)

Multi-strange to non-strange yield ratios **increase significantly and smoothly with multiplicity** in pp and p-Pb collisions until saturation in Pb-Pb [ALICE, Nature Physics 13 (2017) 535-539]

pp and p-Pb trends are remarkably consistent at similar multiplicities

---> What is driving the increase in small systems (mass, baryon/meson, strangeness content)?

----> Can models reproduce the observations?

Not a mass nor baryon/meson effect

Ξ(1530)⁰ relative to π exhibits same increase with multiplicity in p-Pb as Ξ/π (Ξ*/Ξ flat)

---> Strangeness content more relevant than mass

0.45 **Baryon to meson ratio** PYTHIA8 ALICE 00. √s = 7 TeV 0.4 DIPSY **EPOS LHC** p-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0.35 0.3 0.25 Λ/K_{c}^{\vee} 0 0.15 0.1 p/π (×2) 0.05 10 $\left<\mathrm{d}\mathrm{N_{ch}}/\mathrm{d}\eta\right>_{\left|\eta
ight|<\,0.5}$ ALI-PUB-106882

Baryon-to-meson ratios where the net strangeness content is zero, as p/π and Λ/K^0_s , are flat with multiplicity

→ Not a baryon/meson effect

Strangeness enhancement in pp

No increase for p/π is observed

Hierarchy of the increase associated with the strangeness content

A "crack" in conventional pp generators

QCD-inspired models as

- PYTHIA8 (color reconnection) [T. Sjöstrand et al, Comput. Phys.Commun. 191 (2015) 159]
- DIPSY (color ropes)
 - [C. Bierlich et al., JHEP 1503 (2015) 148]
- EPOS LHC (core+corona) [K. Werner et al., NPA 931 (2014) 83]

exhibit a trend with multiplicity but may still need tuning to reproduce all ratios simultaneously

- Conventional pp generators successful, with MPI + CR generating some collectivity, but now cracks.
- Need new framework for baryon production.

T. Sjostrand, <u>talk</u> at Quark Matter 2018

Disentangle multiplicity and energy dependence

Measurements in pp at 13 TeV can be used to disentangle multiplicity and energy dependence of particle production

Yields of (multi-)strange particles measured in pp 13 TeV as a function of multiplicity lie on the same trend as the 7 TeV data

→ Event activity drives particle production, irrespective of collision energy

F. Bellini - Strangeness Seminar - University of Liverpool - 18th October 2018

Disentangle multiplicity and colliding-nucleus dependence

F. Bellini - Strangeness Seminar - University of Liverpool - 18th October 2018

Strangeness canonical suppression

In equilibrium SHM models strangeness enhancement is a result of the canonical suppression of strangeness production in small systems due to the explicit conservation of the strangeness quantum number in a finite system

Comparison to model calculations based on THERMUS code

→ agreement with data within uncertainties, except for ϕ meson (also "immune" to canonical suppression)

System size evolution of hadrochemistry

Particle composition evolves smoothly across collision systems, depending on charged particle multiplicity.

---> Common origin in all systems?

For MC generators, work is still needed to reproduce evolution with system size in view of a unified description of all collision systems

Outlook

.

Does strangeness keep increasing with multiplicity in pp or saturate?

→ Measure in high multiplicity-triggered data sample of pp 13 TeV (2016, 2017), in p-Pb at 8.16 TeV

→ Bridge with Xe-Xe at 5.44 TeV, more differential in peripheral Pb-Pb collisions (2018)

Can we relate high multiplicity with soft- or hard-QCD dominated processes?

 \dashrightarrow Use event shapes as tools to select jetty/isotropic events in high multiplicity pp

Can the ϕ meson provide further insights on strangeness production vs multiplicity?

---> Measure more differential (event shapes?), improve precision

New observables...

The intriguing similarities among different systems do not end here but extend to the dynamics (see e.g. *FB, talk at LHCP 2018*):

- Presence of collectivity (flow) is established in Pb-Pb
- we observe collectivity in small systems, whose origin and phenomenology is under investigation

pp used to be a reference for p-Pb and Pb-Pb collisions, now they look more alike than we thought

- ---> Shall we "re-think" the reference (and how)?
- ---> Can we describe pp, p-Pb and Pb-Pb with a common framework?
- ---> Do we have an handle on the onset of deconfinement?

"From small to large systems" OR "from large to small systems"? → QCD at high energy and density!

For more discussion: fbellini@cern.ch

Extras

F. Bellini - Strangeness Seminar - University of Liverpool - 18th October 2018

.....

Strangeness-to- π ratio (linear y scale)

F. Bellini - Strangeness Seminar - University of Liverpool - 18th October 2018

Particle ratios in pp compared to MC generators

Particle ratios vs p_T and multiplicity

Three systems compared: p_{T} slices

Across the three systems the baryon-to-meson ratios evolve with multiplicity

- in qualitatively similar way: depletion at low p_T , enhancement at intermediate p_T
- rather smoothly for given p_T intervals

More model comparisons – pp

Color Reconnection:

- Implemented in PYTHIA8 Monash
- · Qualitative agreement with the data

Color Ropes:

- Similar mechanism in DIPSY
- also reproduces qualitatively the data

Collective Radial Expansion:

- Present in EPOS LHC
- viable explanation but effect is overestimated

PYTHIA8 – T. Sjöstrand et al., Comput. Phys. Commun. 178 (2008) 852-867
DIPSY – C. Flensburg et al., JHEP 08 (2011) 103; C. Bierlich et al., JHEP 03 (2015) 148;
C. Bierlich et al., PRD 92 (2015) 094010
EPOS LHC – T. Pierog et al., arXiv:1306.0121
HERWIG7 – M. Bahr et al., EPJC 58 (2008) 639-707; J. Bellm et al., EPJC 76 no.4 (2016) 196

Production mechanisms

Baryon-to-meson ratios are a powerful tool to test production mechanisms and their interplay

- **Low-***p*_T rise described by hydro
- Models where recombination involves only soft thermal radially flowing partons consistent with data
- High-p_T p/π is the same in pp and Pb-Pb collisions

 \rightarrow fragmentation dominates

Role of recombination at intermediate p_{T}

Behaviour in Xe-Xe confirms observations in Pb-Pb at 5.02 TeV (ratios compared at similar multiplicity)

Pivotal role of the ϕ -meson, that has similar mass as the proton

 the flatness of the p/φ ratio is consistent with hydro but can be accommodated by models with recombination

→ Still an **open point** on whether **recombination or flow** determine the spectral shape **at intermediate** p_T

Baryon-to-meson ratios

charged

primary particles

In central Pb-Pb collisions

- p/π , Λ/K^0 _S enhancement at intermediate p_T
- Effect arising in the bulk and not from jets
- Flat p/ϕ

The special role of ϕ meson

As a s-sbar pair (S=0) with the same mass as the proton, the ϕ meson is "special" \rightarrow **Does** ϕ **behave like a S=0 or S=2 particle?**

- Indications of increase of ϕ/π ratio with multiplicity in small systems
- Flat Ξ/φ for multiplicities between ~6 and ~700? Or slightly increasing in pp, p-Pb vs multiplicity?

---> Need more precision from experiment!

Resonance suppression in central AA

Short-lived resonance ratios to long-lived particles are **suppressed as centrality increases** in AA collisions

p(770)/π (ρ lifetime = 1.3 fm/c)
K(892)⁰/K (K* lifetime = 4.5 fm/c)
A(1520)/A (Λ* lifetime = 12.5 fm/c)
E(1530)/E (E* lifetime = 22.5 fm/c)

Χ φ(1020)/K (φ lifetime = 45 fm/c)

- Re-scattering effects expected to be stronger in central collisions, as the medium is denser and lasts longer
- Depending on the species, regeneration effects might be dominant → measure Sigma*!

Resonance suppression in central AA

Short-lived resonance ratios to long-lived particles are **suppressed as centrality increases** in AA collisions

 $\rho(770)/\pi$ (ρ lifetime = 1.3 fm/c) K(892)⁰/K (K* lifetime = 4.5 fm/c) $\Lambda(1520)/\Lambda$ (Λ * lifetime = 12.5 fm/c) E(1530)/E (E* lifetime = 22.5 fm/c)

- **Χ φ(1020)/K** (φ lifetime = 45 fm/c)
- Re-scattering effects expected to be stronger in central collisions, as the medium is denser and lasts longer
- Depending on the species, regeneration effects might be dominant → measure Sigma*!

Multi-strange hadron reconstruction

Reconstruction of the weak decay topology in the ALICE central barrel tracking system

 $K^0_s \longrightarrow \pi^+\pi^$ ct = 2.68 cm

Λ → **p**π⁻ cτ = 7.98 cm

 $\Xi^- \rightarrow \Lambda \pi^- \rightarrow (p\pi^-)\pi^$ cτ = 4.91 cm

 $\Omega^{-} \longrightarrow \Lambda K^{-} \longrightarrow (p\pi^{-})K^{-}$ $c\tau = 2.46 \ cm$

π , K, p identification

Charged π ,K,p are identified by combining several PID techniques in 0.1 GeV/c < p_T < 20 GeV/c

The yields of identified π and p are corrected for feeddown from secondary particles produced
in the interaction with the detector material
in weak decays of strange particles

- Kaons also identified using "kink" topology, $K^{\pm} \rightarrow \mu^{\pm} v$
- Statistical identification at high-p_T via relativistic rise of the Bethe-Bloch in the TPC

ALICE, Int. J. Mod. Phys. A 29 (2014) 1430044

Blast-Wave model fit to π,K,p

Boltzmann-Gibbs Blast-Wave model A simplified hydrodynamic model with 3 free fit parameters: [E. Schnedermann et al., Phys. Rev. C48 (1993) 2462]

- T_{kin} = kinetic freeze-out temperature
- β_T : transverse radial flow velocity
- n: velocity profile

Simultaneous fit to the π , K, p spectra:

- in Pb-Pb increase of $\langle \beta_T \rangle$ with centrality
- $\langle \beta_T \rangle$ at 5.02 TeV is (1.78 ± 0.9)% larger than at 2.76 TeV in central Pb-Pb

In pp and p-Pb, similar evolution of the parameters towards high multiplicity

At similar multiplicity, $\langle\beta_T\rangle$ is larger for smaller systems

CAVEAT: sensitivity to fit range and the set of particles included in the fit

ϕ meson and models

Ratio Ξ/ϕ is not well described by models.

PYTHIA6 and EPOS-LHC describe well the multiplicity dependence of $<p_T>$, whereas PYTHIA8 underestimates it.

Σ(1385)[±], Ξ(1530)⁰ vs models in pp 7 TeV

Fig. 6 The transverse momentum spectrum of $\Sigma(1385)^+$ is compared to standard tunes of PYTHIA 6 [34] and PYTHIA 8 [35], the latest release of HERWIG (6.521) [36], and SHERPA release 1.4.6 [37]. The MC data are binned according to the data. Spectra points are represented at the centre of the p_T interval. The *lower panel* shows the ratio data/MC. p_T -independent uncertainties are not shown

