The interplay between open and closed HF at LHC

Audrey FRANCISCO Subatech, France

audrey.francisco@cern.ch

Physics seminar, May 22nd 2018 • University of Liverpool

Introduction

Disclaimer: biased selection of measurements, much more available !

Audrey FranciscoOpen and closed HF at LHCLiverpool University, May 22nd 2018

Quark confinement

Probing the phase diagram of nuclear matter

Heavy ion collisions at LHC

p-p collisions

●p→←p●

- Reference for p-A and A-A measurements
- Test pQCD calculations (QCD vacuum)

p-A collisions

●p→←◎Pb

• Study cold nuclear matter (CNM) effects

A-A collisions

Form and study the Quark Gluon Plasma

Audrey Francisco

Open and closed HF at LHC

Time evolution of a collision

P. Sorensen, arXiv:0905.0174

Observables

- Global
- Light hadrons
- Strange hadrons
- Quarkonia
- Open heavy flavours
- Jet and high p_T hadrons
- Electroweak probes
- Others (Exotic, UPC, ...)

- Centrality
- Rapidity
- **-** p_T
- Azimuthal angle
- Centre of mass energy
- Reaction plane
- Fluctuations
- Small systems
- Correlations

QCD/Models are crucial in the interpretation of the observables. Due to complexity, a global and coherent scenario is a must

X

Audrey Francisco

7

Collective flow

Anistropic matter distribution around the collision...

Upgrade

o-Pb

Pb-Pb

ALICE

H

Intro

... if the system is interacting, reflected in the final particle momentum distribution

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \{1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\Phi - \Psi_{RP})))\}$$

Flow coefficients : $v_n = \cos \{n(\Phi_i^{\dagger} - \Psi_{RP})\} >$

directed flow (v_1), elliptic flow (v_2), triangular flow (v_3), ...

Audrey Francisco

Pressure

Elliptic flow of charged particles

ALICE 40-50% Pb-Pb $\sqrt{s_{_{\rm NN}}} = 2.76 \,{\rm TeV}$

*Λ+Ā

2

p₊ (GeV/c)

v₂ governed by the QGP evolution

Audrey Francisco

Open and closed HF at LHC

Main observables

Nuclear modification factor RAA

$$R_{AA} = \frac{Y_{AA}}{\langle T_{AA} \rangle \sigma_{PP}}$$

Quarkonium yield in A-A compared to the pp one, scaled by the overlap factor T_{AA} (from Glauber model)

- No medium effect : R_{AA}= 1
- R_{AA}≠ 1 : cold nuclear matter + hot medium effects

Almond shape of the overlap region

- *v*₂ >0: More particles in-plane
- *v*₂ <0: More particles out-of-plane

OUTLINE

Disclaimer: biased selection of measurements, much more available !

Audrey Francisco

Motivations for HF studies

- In the QGP: local equilibrium is maintained until the phase transition
 - hadrons made of light quarks, carry only information on properties of the plasma close to the phase transition
 - not useful to obtain the desired information on the creation and the early time evolution of the QGP
- Large mass of heavy quarks
 - Longer thermal relaxation time
 - Extract transport coefficients in the medium
 - Estimate the thermalisation degree of heavy quarks

Motivations for HF studies

- Heavy quarks in Pb-Pb collisions at the LHC
 - early production (c ~ 0.1 fm/c vs. QGP ~ 0.3 fm/c)
 - → experience the full system evolution
 - interact with the QGP : sensitive to the medium properties
 - No thermal production and negligible annihilation
 - → Number conserved throughout partonic and hadronic stages of the collision
- HF in Pb-Pb collisions: hard probes of the QGP
 - **Open heavy flavours**
 - D mesons
 - Λ_c, Ξ_c

HF decay electrons and muons

Closed heavy flavours (Quarkonia) cc: charmonium J/ψ , ψ (2S) bb: bottomonium Υ (1S) (2S) (3S)

Nucl.Phys. A757 (2005) 184-283

The ALICE detector

Run 2

pgrade

o-Pb

Pb-Pb

ALICE

늪

Intro

Open heavy-flavour in ALICE

Ϊ

Open and closed HF at LHC

Quarkonium with ALICE

Audrey Francisco

Open and closed HF at LHC

Open heavy flavours

Formation involves both hard and soft processes

Strong suppression in central events

→ affected by energy loss, medium transport properties

In-medium parton energy loss via collisional and radiative processes:

- medium density and path-length dependence
- colour-charge and quark-mass dependence

Modification in the hadronisation mechanism in presence of a medium

The elliptic flow of D mesons at $\sqrt{s_{NN}} = 5.02 \text{TeV}$

Good theoretical description but challenging when combining both observables

Extract charm transport coefficient

Comparison to other species:

- → hadronization mechanisms
- \rightarrow **Partonic charm** v_2 , scaling w.r.t. light quarks

Audrey Francisco

Open and closed HF at LHC

The elliptic flow of D mesons at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Results with the Event Shape Engineering method: study the coupling of c quark to the bulk of light quarks

→ Heavy quarks participate to the collective expansion dynamics

Audrey Francisco

Quarkonium in the QGP

Quarkonium suppression :

(2S)(1P)

 $\epsilon(2S) \epsilon(1P)$

• Initially : J/ψ suppression predicted by Matsui and Satz in 1986 by **Debye** screening mechanism Phys.Lett. B178 (1986) 416-422

Different quarkonium binding energy : • sequential suppression with increasing PbPb 368/464 μb⁻¹, pp 28.0 pb⁻¹ (5.02 TeV) medium temperature Phys. Rev. D 64 (2001) 094015 $p_{-}^{\mu\mu} < 30 \text{ GeV/c}$ CMS 1.2 ly^{نُµµ}l < 2.4 Preliminary • Y(1S) J/Ψ Suppression I/WSurvival Probability Y(2S) 0.8 Y(3S) 68% CL R_{AA} **▼** Y(3S) 95% CL 0.6

Upgrade

Audrey Francisco

Open and closed HF at LHC

(1S)

E(1S)

Energy Density

Quarkonium in the QGP

Quarkonium suppression (Re)combination :

- Increased charm quark density →enhanced quarkonia production
- Less relevant for bottomonium than charmonium

Audrey Francisco

Open and closed HF at LHC

AA AA

Quarkonium in the QGP

Exp. observations interpreted as suppression + (re)combination

All models reproduce data

Main sources of uncertainties

- Precise determination of cc cross-section
- CNM effects on quarkonium production

Transport models: TM1 and TM2 Zhao et al., NPA859, 114, Zhou et al., PRC89, 054911 Statistical hadronization Andronic et al., NPA 904-5, 535c Co-movers interaction model Ferreiro et al., PLB731, 57

LICE

4

늪

Intro

Open and closed HF at LHC

Charmonium in the QGP

Audrey Francisco

Open and closed HF at LHC

$\psi(\text{2S})$ is expected to be more easily dissociated than J/ ψ

 $\psi(2S)/J/\psi$ should greatly help model discrimination

Data show a stronger suppression in semi-central and central collisions

For low significance : upper limit at 95% CL

More statistics are needed→ upgrades for LHC run 3

$J/\psi v_2$ at RHIC energies

Audrey Francisco

Open and closed HF at LHC

$J/\psi v_2$ at $\sqrt{s_{NN}} = 2.76$ TeV

9

10

 $6.5 < p_{_{T}} < 30 \text{ GeV/c}$

Cent. 10-60%

Global uncert. 2.7%

1.2

1.6

IVI EPJC 77 (2017) 252

2

PbPb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

2.4

$J/\psi v_2$ at $\sqrt{s_{NN}} = 5.02$ TeV

A significant v_2 is observed for various centrality and p_T bins Compatible between both rapidity

At low p_T : magnitude reproduced by including a strong J/ ψ (re)generation component At high p_T : the v_2 is underestimated

Additionnal component from initial magnetic field could help better describe high p_T anisotropy

Audrey Francisco

$J/\psi v_2$ comparison with D mesons

Comparison to open charm: strong hints of \rightarrow charm thermalization → charm quark (re)combination

TCF

D meson production in p-Pb collisions

Small/negligible Cold Nuclear Mater (CNM) effects at high p_T

Transport models assuming QGP formation are disfavoured

Models assuming CNM effects (nPDF, kT broadening, E_{loss}, ...) reproduce the measurements

Improved precision of the measurement is required for a more conclusive statement

32

Cold nuclear matter effects on charmonium

Outside hot matter mechanisms, other effects might affect quarkonium production

• Energy loss

Upgrade

p-Pb

- Initial state: nuclear parton shadowing/CG condensate
- Final state: nuclear absorption

CNM investigated in p-A collisions

Collectivity in small systems

Double ridge structure in high multiplicity pp event di-hadron correlations

Similar structure observed in p-Pb

Are these QGP-like collective effects present in the charm sector ?

Audrey Francisco

Indirect hints

Positive v₂ observation for charged particles

Mass ordering for p_T < 2.5GeV/c

At high p_T muons are dominated by HF decays

Audrey Francisco

H

Intro

Collectivity in p-Pb collisions

Smaller v_2 observed for D⁰ compared to strange-hadrons in p-Pb

Weaker charm interaction with the medium w.r.t. light quarks?

Audrey Francisco

Upgrade

p-Pb

Pb-Pb

ALICE

Ë

Intro

Open and closed HF at LHC Liverpool University, May 22nd 2018

Collective effect for J/ψ in p-Pb?

 $v_2(c) < v_2(s)$: sign of weaker charm interaction ?

 KE_{T}/n_{a} (GeV)

CMS-PAS-HIN-18-010

Audrey Francisco

o-Pb

Pb-Pb

Ю

÷

Open and closed HF at LHC

Upgrade programme

Higher precision, low signal/background observables, low p_T heavy quarks, rarest probes

PbPb 50kHz

New rea-out electronics New TPC GEM chambers New computing system Inner tracker (ITS) upgrade New forward tracker (MFT) New forward calo (2024)?

100-fold larger integrated luminosity than run 1 and run 2 Low signal over background: hardware trigger filtering nearly impossible at low p_T

Audrey Francisco

Open and closed HF at LHC

The detector upgrade

Increase of luminosity (50kHz IR) and improve vertexing and tracking at low $\ensuremath{p_{T}}$

Increase statistics to 10 nb⁻¹ Interaction rate: 8 -> 50 kHz (LHC) Trigger rate: 1 kHz -> 50 kHz (ALICE O²)

Audrey Francisco

New silicon sensor

CMOS Monolithic Active Sensors (MAPS), TowerJazz 0.18 µm technology

Sensor size: 15mm x 30mm

Pixel size: 29 µm x 27 µm

Upgrade

o-Pb

Pb-Pb

ALICE

÷

Intro

ction Efficier

high resistivity (>1k Ω cm) epitaxial layer

deep p-well (shields n-well of PMOS transistors)

- high granularity
- ➡ Event time resolution < 4us</p>
- Iow material budget
- Iow power consumption
- binary output (in-pixel discri)
- fast readout time
- medium radiation hardness

The ITS upgrade

Improving tracking performances at low p_T

- Large area (10 m²) tracker made of monolithic active silicon pixel sensors
 - 7 layers from R=22mm to R=400mm Inner Barrel, Outer Barrel (Middle layers & Outer layers)
- Spatial resolution 0(5 μm)
- First layer closer to IP (smaller beam pipe radius)
- 0.3%X₀ per layer in the inner most 3 layers (light mechanical structure)

ITS upgraded performance

Audrey Francisco

Upgrade expectations for open

Audrey Francisco

Open and closed HF at LHC

MFT upgrade

Audrey Francisco

d-d-d

Pb-Pb

ALICE

늪

Intro

Open and closed HF at LHC

Upgrade expectations for quarko

Prompt charmonium

Beauty measurement via displaced J/psi

More precise bottomonium and $\psi(2S)$ measurements, v_2 ?

SUMMARY

Back-up

Expected performances for quarkonia

Audrey Francisco

Upgrade

Bottomonium in the QGP

Open and closed HF at LHC

Strong Y(1S) suppression

Direct Y(2S) and Y(3S) production suppressed ?

But rather different than for \bar{cc}

- No plateau is observed
- ~ no p_T dependence
- Compatible with transport models w/wo (re)generation

Charmonium reconstruction

Audrey Francisco

Open and closed HF at LHC

Mid-rapidity results

Good agreement between both rapidity measurements

Hint of a production increase for the most central collisions at mid-y

Φ

O

Charmonium production vs p_{τ}

most central collisions

Transport model predicts similar trend

Audrey Francisco

Intro

Open and closed HF at LHC

Charmonium spectroscopy

v₂ results comparison

Audrey Francisco

Open and closed HF at LHC Liverpool University, May 22nd 2018

J/ ψ Nuclear Modification factor vs p_T, <p_T>, r_{AA}

Audrey Francisco

Open and closed HF at LHC

Charmonium production in p-Pb

Audrey Francisco

Open and closed HF at LHC

Open heavy flavours

- Strong suppression in the medium
- Well reproduced by theory

2

0.8

0.6 0.4 0.2

n

ALI-PUB-145280

U

Audrey Francisco

10

15

20

25

30

35

40

5

Open and closed HF at LHC

50

45

 $p_{_{\rm T}}\,({\rm GeV}/c)$

D meson flow at RHIC

Clear mass ordering below 2 Gev/c

Scales with NCQ, following same trend as light hadrons

Audrey Francisco

CMS measurement of prompt $D^0 v_2$ at 5.02 TeV

Audrey Francisco

Open and closed HF at LHC

STAR measurement of prompt $D^0 v_2$ at 200 GeV

Non-prompt $J/\psi v_2$ with CMS

Open and closed HF at LHC Liverpool University, May 22nd 2018

D^0 meson v_2 with STAR at 200GeV/c

Audrey Francisco

D meson flow at $\sqrt{s_{NN}} = 2.76$ TeV

Audrey Francisco

Open and closed HF at LHC

Open HF reconstruction

Audrey Francisco

Pseudo-rapidity dependency

depends on particle multiplicity

Audrey Francisco

Open and closed HF at LHC

p_T/n_q scaling ?

- below 1 GeV/c : ok
- then : 20% variations in both centralities

Detector equalization and resolution

- ALICE
- Focus on methods based on event plane determination
 - From detector multiplicities :

$$\Psi_n = \tfrac{1}{n} \arctan(Q_{n,x},Q_{n,y})$$

Correct for detector resolution : using 3 sub-event method

$$< cos \{n(\Psi_{2}^{a} - \Psi_{R})\} > = \sqrt{\frac{< cos \{n(\Psi_{2}^{a} - \Psi_{2}^{b})\} > < cos \{n(\Psi_{2}^{a} - \Psi_{2}^{c})\} >}{< cos \{n(\Psi_{2}^{b} - \Psi_{2}^{c})\} >}}$$
A. M. Poskanzer and S. A. Voloshin, Phys Rev. C58, 1671

Detector equalization to deal with non-uniform acceptance

Audrey Francisco

J/ψ elliptic flow: how to measure it ?

Methods based on event plane determination From detector multiplicities : $\Psi_n = \frac{1}{n} \arctan(Q_{n,x}, Q_{n,y})$

Fit of $(\cos(2 \Delta \phi))$ distribution vs inv. mass with $\Delta \phi = \phi_{\mu\mu} - \Psi_{2,EP}$

Audrey Francisco

Open and closed HF at LHC

Detector equalization and resolution

- Maximum residual oscillations after equalisation : SPD (20-30%): $v_2 \approx 0.0012$; $v_4 \approx 0.015$; $v_6 \approx 2e-6$
- ratio of cross-terms to same-terms as an estimation of the uncertainty on the EP determination : 1% systematic uncertainty correlated with centrality
- Resolution calculated using the 3 sub-events method with VOA, VOC and SPD
- Centrality bins used for $J/\psi v_2$ analysis are large
- + Non uniform distribution of the number of J/ ψ

	5-20%	20-40%	40-60%	60-90%
SPD	0.87297±0.00019	0.91031±0.00014	0.83192±0.00022	0.55432±0.00333

Open and closed HF at LHC

ъ

Equalization steps

- 1. Gain equalization of individual detector channels
 - $M_c' = M_c / \langle M_c \rangle$
- 2. Recentering

$$\boldsymbol{q}_n' = \boldsymbol{q}_n - \langle \boldsymbol{q}_n \rangle$$

3. Width equalization

$$q_n'' = q_n' / \sigma_{q_n}$$

4. Alignment

$$oldsymbol{q}_n^{\prime\prime\prime}=oldsymbol{q}_n^{\prime\prime}+oldsymbol{q}_{n,\phi}^{\prime\prime}$$

5. Twist

l

$$q_{n,(x,y)}^{\prime\prime\prime\prime\prime} = (q_{n,(x,y)}^{\prime\prime\prime} - \Lambda_{2n}^{s(+,-)} q_{n,(y,x)}^{\prime\prime\prime}) / (1 - \Lambda_{2n}^{s-} \Lambda_{2n}^{s+})$$

Rescaling

$$q_{n,(x,y)}^{\prime\prime\prime\prime\prime} = q_{n,(x,y)}^{\prime\prime\prime\prime} / A_{2n}^{(+,-)}$$

Audrey Francisco

ALICE Before correction

