

European Research Council Established by the European Commission

Probing the Higgs Yukawa couplings at the Large Hadron Collider

Konstantinos Nikolopoulos

University of Birmingham

Particle Physics Seminar May 16, 2018, University of Liverpool, Liverpool, UK

ATLAS experiment at CERN

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement no 714893 (ExclusiveHiggs)

The Large Hadron Collider

The LHC detectors

ATLAS performance overview

4

Snapshot of measurements

Higgs mechanism and the Higgs boson

- SU(2)_L⊗U(1)_Y local gauge symmetry; electro-weak unification: massless carriers
- Symmetry spontaneously broken; Higgs field obtains non-zero vacuum expectation value
 - 3 d.o.f of Higgs field become longitudinal polarisations of W[±]/Z bosons
 - 1 d.o.f of Higgs field becomes the physical Higgs boson
- Higgs interactions to vector bosons: defined by symmetry breaking

OLUME 13, NUMBER 9	PHYSICAL REVIEW LETTERS	31 August 190
BROKEN SYMMET	TRY AND THE MASS OF GAUGE VE	CTOR MESONS*
Faculté des Scienc	F. Englert and R. Brout es, Université Libre de Bruxelles, Brux (Received 26 June 1964)	xelles, Belgium
Volume 12, number 2	PHYSICS LETTERS	15 September 1964
BROKEN SYMMET Tait Institu	RIES, MASSLESS PARTICLES AN P.W.HIGGS te of Mathematical Physics, University of Edinbur	D GAUGE FIELDS
BROKEN SYMME T Tait Institu	TRIES, MASSLESS PARTICLES AN P.W.HIGGS te of Mathematical Physics, University of Edinbur Received 27 July 1964	D GAUGE FIELDS
BROKEN SYMME T Tait Institu Volume 13, Number 16	TRIES, MASSLESS PARTICLES AN P.W.HIGGS te of Mathematical Physics, University of Edinbur Received 27 July 1964 PHYSICAL REVIEW LETTERS	D GAUGE FIELDS rgh, Scolland 19 October 1964
BROKEN SYMMET Tait Institu Volume 13, Number 16 BROKE	TRIES, MASSLESS PARTICLES AN P.W.HIGGS te of Mathematical Physics, University of Edinbur Received 27 July 1964 PHYSICAL REVIEW LETTERS	D GAUGE FIELDS rgh, Scotland 19 October 1964 DSONS
BROKEN SYMMET Tait Institu Volume 13, Number 16 BROKE Tait Institute of	TRIES, MASSLESS PARTICLES AN P.W. HIGGS te of Mathematical Physics, University of Edinbur Received 27 July 1964 PHYSICAL REVIEW LETTERS N SYMMETRIES AND THE MASSES OF GAUGE BO Peter W. Higgs Mathematical Physics, University of Edinburgh, Edinbu (Received 31 August 1964)	D GAUGE FIELDS rgh, Scotland 19 October 1964 DSONS rgh, Scotland

GLOBAL CONSERVATION LAWS AND MASSLESS PARTICLES*

G. S. Guralnik,[†] C. R. Hagen,[‡] and T. W. B. Kibble Department of Physics, Imperial College, London, England (Received 12 October 1964)

Higgs-fermion interactions: Yukawa couplings

- Higgs interactions to vector bosons: defined by electroweak symmetry breaking
- Higgs interactions to fermions: ad-hoc hierarchical Yukawa couplings∝mf

Yukawa couplings not imposed by fundamental principle
 Probing fermion mass generation scale → independent task
 Fermion mass generation scale from unitarity bounds:

$$\Lambda \approx 23, 31, 52, 77, 84 \text{ TeV}_{(b,c,s,d,u)}$$

[Phys. Rev. Lett. 59, 2405 (1987); Phys.Rev. D71 (2005) 093009]

 Modified Higgs-fermion couplings in BSM scenarios
 Concise summary in LHC Higgs Cross-section WG YR4 [arxiv:1610.07922]

Effects $\sim 1/\Lambda^2$ or \sim to mixing angles with extra scalars

SM Higgs boson production and decay

The Higgs boson properties

nutshelli Higgs-fermion interactions: The story so fa

For 3rd generation fermions:

 \mathbf{V} top-quark, bottom-quark, τ -lepton: tth observed, $h \rightarrow bb$ established, h→TT observed For 1st/2nd generation fermions, different picture: \Box e/µ: no evidence yet \rightarrow established non-universality $h \rightarrow \mu\mu$: feasible in LHC (possibly in Run II/III)... \Box c-quark: no direct evidence, loose bounds from h \rightarrow bb u/d/s-quarks: no inclusive searches available Higgs couplings: margin for undetected/unobserved decays

K. Nikolopoulos / Liverpool, 16 May 2018 / Study of the Higgs boson interactions with fermions

0.5

K. Nikolopoulos / NKUA, 23 Oct 2017 / Study of the Higgs boson interactions with fermions

Higgs boson-charm quark coupling

Zh(→cc):Event Selection

First search for exclusive Zh \rightarrow IIcc decays, I=e, μ

Small experimental uncertainties

Main backgrounds: Z+jets, Z(W/Z), ttbar

$Z \rightarrow \ell^+ \ell^-$ Selection

- Trigger with lowest available p_T single electron or muon triggers
- Exactly two same flavour reconstructed leptons (e or μ)
- Both leptons p_T > 7 GeV and at least one with p_T > 27 GeV
- Require opposite charges (dimuons only)
- $81 < m_{\ell\ell} < 101 \; {
 m GeV}$
- $p_{\rm T}^Z > 75 {
 m GeV}$

Split events into 4 categories

- ▶ h→cc candidates with 1 or 2 c-tags
- ▶ p_{TZ} above/below 150 GeV
- Background modelling and uncertainties validated with Z(Z/W) production measurement
 - ▷ Observed (expected) ZV production with significance of 1.4σ (2.2 σ)
 - Measure ZV signal strength of 0.6^{+0.5}-0.4, consistent with SM expectation
- K. Nikolopoulos / Liverpool, 16 May 2018 / Study of the Higgs boson interactions with fermions

$H \rightarrow c\bar{c}$ Selection

- Consider anti- $k_T R = 0.4$ calorimeter jets with $|\eta| < 2.5$ and $p_T > 20$ GeV
- Form $H \rightarrow c\bar{c}$ candidate from the two highest p_T jets in an event
- At least one *c*-tagged jet from $H \rightarrow c\bar{c}$ candidate
- Dijet angular separation ΔR_{jj} requirement which varies with p_T^Z

Zh(→cc):Background Composition

Zh(→cc):Fit Results

Zh(→cc):Results

No evidence for Zh(cc) production with current dataset

arXiv:1802.04329

Limits on $ZH(c\bar{c})$ production

95% CL <i>CL_s</i> upper limit on $\sigma(pp \rightarrow ZH) \times \mathcal{B}(H \rightarrow c\bar{c})$ [pb]						
Observed Median Expected Expected $+1\sigma$ Expected						
2.7	3.9	6.0	2.8			

Source	$\sigma/\sigma_{\rm tot}$
Statistical	49%
Floating Z + jets normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

SM: 2.55×10⁻² pb

▶ 110×SM (150⁺⁸⁰-40)

The sum in quadrature of the individual components differs from the total uncertainty due to correlations between the components.

\blacksquareA tagging working point constrains linear combination of $h \rightarrow cc/h \rightarrow bb$

- \blacktriangleright Analysis in conjunction with h→bb; account for cross-contamination
- For future key is the controlling of systematic uncertainties
 - Phenomenological analysis indicates |κ_c|≤2.5-5.5 at 95%CL
 - 2×3000 fb⁻¹ depending on the c-tagging scenario [Phys.Rev. D93 (2016) 013001

Exclusive Decays $h_V \rightarrow Q\gamma$

- **h** \rightarrow Q γ decays: clean probe for Higgs-quark couplings for 1st/2nd generation quarks
 - \triangleright Q is a vector meson or quarkonium state
- Two contributions: direct and indirect amplitude
 - Direct amplitude: provides sensitivity to Higgs boson-quark couplings
 - Indirect amplitude: insensitive to Higgs boson-quark couplings; larger than direct amplitude
 - Destructive interference

Phys.Rev. D90 (2014) 11, 113010

Similar decays of W[±] and Z bosons: also rich physics programme

- ▶ **Novel** precision studies of quantum chromo-dynamics
- ▶ W[±]/Z boson interactions with light quarks not well covered at earlier facilities
- Discovery potential for new physics processes
- K. Nikolopoulos / Liverpool, 16 May 2018 / Study of the Higgs boson interactions with fermions

Exclusive Decays $h \rightarrow Q\gamma$

Substantial interest from theory community on branching ratio estimates and feasibility

Mode	I	Branching Fraction $[10^{-6}]$				
Method	NRQCD [1487]	LCDA LO [1486]	LCDA NLO [1489]			
${\rm Br}(h\to\rho\gamma)$	_	19.0 ± 1.5	16.8 ± 0.8			
${\rm Br}(h\to\omega\gamma)$	_	1.60 ± 0.17	1.48 ± 0.08			
${\rm Br}(h o \phi \gamma)$	_	3.00 ± 0.13	2.31 ± 0.11			
${ m Br}(h o J/\psi\gamma)$	_	$2.79{}^{+0.16}_{-0.15}$	2.95 ± 0.17			
${ m Br}(h o \Upsilon(1S) \gamma)$	$(0.61^{+1.74}_{-0.61}) \cdot 10^{-3}$	_	$(4.61^{+1.76}_{-1.23}) \cdot 10^{-3}$			
$\operatorname{Br}(h \to \Upsilon(2S) \gamma)$	$(2.02^{+1.86}_{-1.28}) \cdot 10^{-3}$	_	$(2.34^{+0.76}_{-1.00}) \cdot 10^{-3}$			
$\operatorname{Br}(h \to \Upsilon(3S) \gamma)$	$(2.44^{+1.75}_{-1.30}) \cdot 10^{-3}$	_	$(2.13^{+0.76}_{-1.13}) \cdot 10^{-3}$			

PRD90 (2014) 113010 PRL 114 (2015) 101802 JHEP 1508 (2015) 012

Decay mode	Branching ratio
$Z^0 \to \pi^0 \gamma$	$(9.80^{+0.09}_{-0.14\mu} \pm 0.03_f \pm 0.61_{a_2} \pm 0.82_{a_4}) \cdot 10^{-12}$
$Z^0 o ho^0 \gamma$	$(4.19^{+0.04}_{-0.06\ \mu} \pm 0.16_f \pm 0.24_{a_2} \pm 0.37_{a_4}) \cdot 10^{-9}$
$Z^0\to\omega\gamma$	$ (2.89^{+0.03}_{-0.05\mu} \pm 0.15_f \pm 0.29_{a_2} \pm 0.25_{a_4}) \cdot 10^{-8} $
$Z^0 o \phi \gamma$	$ (8.63^{+0.08}_{-0.13\mu} \pm 0.41_f \pm 0.55_{a_2} \pm 0.74_{a_4}) \cdot 10^{-9} $
$Z^0 \to J/\psi \gamma$	$(8.02^{+0.14}_{-0.15\ \mu} \pm 0.20_{f\ -0.36\ \sigma}) \cdot 10^{-8}$
$Z^0 \to \Upsilon(1S) \gamma$	$(5.39^{+0.10}_{-0.10\ \mu} \pm 0.08_{f\ -0.08\ \sigma}) \cdot 10^{-8}$
$ Z^0 \to \Upsilon(4S) \gamma $	$(1.22^{+0.02}_{-0.02\mu} \pm 0.13_{f-0.02\sigma}) \cdot 10^{-8}$
$ Z^0 \to \Upsilon(nS) \gamma $	$(9.96^{+0.18}_{-0.19\ \mu} \pm 0.09_{f\ -0.15\ \sigma}) \cdot 10^{-8}$

JHEP 1504 (2015) 101

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$ (n=1,2,3)

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Mass Resolution

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Background

30

23

9

8

8

6

42

32

49

31

Observed (Expected Background)

80 - 100

 (8.9 ± 1.3)

 (6.0 ± 0.7)

 (8.7 ± 1.0)

 (5.6 ± 0.7)

 (39 ± 6)

 (47 ± 6)

 (31 ± 5)

 (27.7 ± 2.4)

Mass Range [GeV]

115 - 135

 (5.0 ± 0.9)

 (5.5 ± 0.6)

 (5.8 ± 0.8)

 (3.0 ± 0.4)

 (12.9 ± 2.0)

 (9.7 ± 1.2)

 (17.8 ± 2.4)

 (12.3 ± 1.9)

 $J/\psi \gamma$

 $\Upsilon(nS)\gamma$

5

3

2

10

16

5

16

18

Signal

Η

 $\mathcal{B} [10^{-3}]$

 1.96 ± 0.24

 1.06 ± 0.13

 1.47 ± 0.18

 0.93 ± 0.12

 2.6 ± 0.3

 1.45 ± 0.18

 2.5 ± 0.3

 1.60 ± 0.20

Z

 $\mathcal{B}[10^{-6}]$

 1.29 ± 0.07

 0.63 ± 0.03

 1.37 ± 0.07

 $0.99 {\pm} 0.05$

 1.67 ± 0.09

 0.79 ± 0.04

 2.24 ± 0.12

 1.55 ± 0.08

Inclusive quarkonium with jet "seen" as y Jategory combinatoric background: small contribution All contribution from $Q+\gamma$ production Non-parametric data-driven background mode BC 29Begin with loose sample of candidates EU 35EC Model kinematic and isolation distributions Generate "pseudo"-background events BU 9371BC Apply selection to "pseudo"-candidates 125EU EC 85**Y(nS)y:** also $Z \rightarrow \mu \mu \gamma_{FSR}$ from side-band fit

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Systematics

Signal Yield Uncertainty: Several sources of systematic uncertainty on the h and Z signal yields are considered, all modelled by nuisance parameters in likelihood:

Source Signal Yield Uncertainty		Estimated From
Total <i>H</i> cross section	12%	QCD scale variation and
Total Z cross section	4%	PDF uncertainties
Integrated Luminosity	2.8%	Calibration observable and vdM scan uncertainties
Trigger Efficiency	1.7%	
Photon ID Efficiency	Up to 0.7%	Data driven techniques with
Muon ID Efficiency Up to 0.4%		$Z \rightarrow \ell^+ \ell^-$, $Z \rightarrow \ell^+ \ell^- \gamma$ and
Photon Energy Scale 0.2%		$\int J/\psi ightarrow \mu^+\mu^-$ events
Muon Momentum Scale	Negligible	

Background Shape Uncertainty: Estimated from modifications to modeling procedure (e.g. shifting/warping input distributions), shape uncertainty included in likelihood as a shape morphing nuisance parameter

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Results

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Results

95% CL upper limits on decay Branching Ratios:

Phys.Rev.Lett. 114 (2015) 12, 121801

- ▶ $\mathcal{O}(10^{-3})$ for Higgs boson (SM production)
- $\triangleright \mathcal{O}(10^{-6})$ for Z boson

☑ Indicate non-universal Higgs boson coupling to quarks

- [Phys.Rev. D92 (2015) 033016, JHEP 1508 (2015) 012]
- ▷ CMS obtained the same 95% CL upper limit: BR[H \rightarrow (J/ ψ) γ] < 1.5x10⁻³ [Phys.Lett. B753 (2016) 341]

K. Nikolopoulos / NKUA, 23 Oct 2017 / Study of the Higgs boson interactions with fermions

Search for $h/Z \rightarrow \phi \gamma$ and $\rho \gamma$

 $BR(h \to \phi \gamma) = (2.31 \pm 0.03_{f_{\phi}} \pm 0.11_{h \to \gamma \gamma}) \cdot 10^{-6}$

PRL 117, 111802 (2016)

PHYSICAL REVIEW LETTERS

week ending 9 SEPTEMBER 2016

Search for Higgs and Z Boson Decays to $\phi\gamma$ with the ATLAS Detector

M. Aaboud et al.* (ATLAS Collaboration) (Received 14 July 2016; published 9 September 2016)

A search for the decays of the Higgs and Z bosons to a ϕ meson and a photon is performed with a pp collision data sample corresponding to an integrated luminosity of 2.7 fb⁻¹ collected at $\sqrt{s} = 13$ TeV with the ATLAS detector at the LHC. No significant excess of events is observed above the background, and 95% confidence level upper limits on the branching fractions of the Higgs and Z boson decays to ϕ_{γ} of 1.4×10^{-3} and 8.3×10^{-6} , respectively, are obtained.

DOI: 10.1103/PhysRevLett.117.111802

First search, with 2.7 fb⁻¹ at 13 TeV collected in 2015 **I** h $\rightarrow \phi \gamma$ sensitive to strange quark Yukawa coupling challenging to access with inclusive $h \rightarrow ss$ decays! Looking for new physics through anomalous couplings ▶ possible in various BSM scenarios, modifies BR($h \rightarrow \phi \gamma$) $\mathbf{Z} \rightarrow \varphi \gamma$ not directly constrained by existing measurements

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}\left(H\to\phi\gamma\right)\left[\;10^{-3}\;\right]$	$1.5\substack{+0.7 \\ -0.4}$	1.4
$\mathcal{B}\left(Z\to\phi\gamma\right)\left[\;10^{-6}\;\right]$	$4.4^{+2.0}_{-1.2}$	8.3

New results with up to 35.6/fb

updated $h/Z \rightarrow \phi \gamma$

added $h/Z \rightarrow \rho \gamma$ probing up- and -down quark couplings to Higgs boson

arXiv:1712.02758

Analysis Strategy

Analysis Strategy

Trigger Strategy

Trigger rates (July 2016) LHC fill with peak luminosity $1.02*10^{34}$ cm⁻²s⁻¹ and <µ>= 24.2

- ATLAS features a two-level trigger system to reduce the data rate from 40 MHz to the 1kHz that can be stored for further processing and analysis
 - ▶Level-1: Hardware-based
 - ▶ 40 MHz \rightarrow 100 kHz
 - High Level Trigger: Software-based
 - ▶ 100kHz \rightarrow 1 kHz

This is the total data rate ATLAS can record

- A dedicated analysis-specific trigger will only allowed a small fraction of this rate
 - ▶ typically well below 10 Hz
- Highly selective trigger design is needed

Trigger Strategy

Efficiency and Resolution

Background Modelling

- **Dominated by QCD production** γ +jet and multi-jet events
- **Exclusive "peaking" backgrounds** (e.g. $h/Z \rightarrow \mu \mu \gamma_{FSR}$) estimated to be negligible
- **Non-parametric data-driven background model**; common for ATLAS Qy searches
- Begin with loose sample of candidates
- Model kinematic and isolation distributions
- Generate "pseudo"-background events
- Apply selection to "pseudo"-candidates
- **Background Normalisation:** Directly from the data in the Signal Region
- **Background Shape Uncertainty:** Estimated from modifications to modelling procedure (e.g. shifting/warping input distributions), shape uncertainty included in likelihood as a shape morphing nuisance parameter

Background validation in side-bands

Results

HL-LHC and beyond

 HL-LHC is a Higgs boson factory
 Ø(200M) Higgs bosons produced
 HL-LHC projections for h/Z→J/ψγ
 Simple and, relatively, clean final state
 Small branching ratio, few events expected
 At SM sensitivity h→μμγ_{FSR} contribution ~3×h→J/ψγ and (Z→μμγ_{FSR} for Z)
 Sensitive to "anomalous" h→γγ; use ratio
 Future colliders: leap in Higgs production rate
 FCC-hh 100 TeV 20/ab: Ø(15G) Higgs bosons

HL-LHC and beyond

 $[pT_j > 20 \text{ GeV}, |\eta_j| < 5, DR(j_1, j_2) > 0.4, \epsilon_c = 0.4, \epsilon_{g \to c} = 1\%, \epsilon_{b \to c} = 30\%]$

- Derive constraints on Higgs boson-quark couplings through the Higgs boson kinematic distributions
 For example pT_h or y_h
- Phenomenological study suggests that couplings to upand down-quarks could be constrained to <0.4 of the bquark Yukawa at HL-LHC.

PRL 118 (2017) 121801, JHEP 1612 (2016) 045, arXiv:1608.04376

Summary

Additional Slides

Higgs boson and precision electroweak physics

Common coupling scaling for all Fermions (κ_F) and for all Bosons (k_V); no BSM contributions

Spin/CP properties

Eur. Phys. J. C75 (2015) 476

Performance of the ATLAS c-tagger

ATLAS-CONF-2017-078

- ▶ b-jets from t \rightarrow Wb decays
- \blacktriangleright c-jets from W \rightarrow cs, cd decays (in ttbar events)
- Typical total relative uncertainties of around 25%, 5% and 20% for c-, b- and light jets, respectively

c-tagging

E PER AD ADDIA ALTA

c-tagging

$Zh \rightarrow cc:Yields$

arXiv:1802.04329

Sample	Yield, 50 GeV $< m_{c\bar{c}} < 200$ GeV				
Sample	1 <i>c</i> -t	ag	2 <i>c</i> -tags		
	$75 \le p_{\mathrm{T}}^Z < 150 \mathrm{GeV}$	$p_{\rm T}^Z \ge 150 {\rm GeV}$	$75 \le p_{\mathrm{T}}^Z < 150 \mathrm{GeV}$	$p_{\rm T}^Z \ge 150 {\rm GeV}$	
Z + jets	69400 ± 500	15650 ± 180	5320 ± 100	1280 ± 40	
ZW	750 ± 130	290 ± 50	53 ± 13	20 ± 5	
ZZ	490 ± 70	180 ± 28	55 ± 18	26 ± 8	
$t\bar{t}$	2020 ± 280	130 ± 50	240 ± 40	13 ± 6	
$ZH(b\bar{b})$	32 ± 2 19.5 ± 1.5		4.1 ± 0.4	2.7 ± 0.2	
$ZH(c\bar{c})$ (SM)	-143 ± 170 (2.4)	$-84 \pm 100 (1.4)$	$-30 \pm 40 \ (0.7)$	$-20 \pm 29 \ (0.5)$	
Total	72500 ± 320	16180 ± 140	5650 ± 80	1320 ± 40	
Data	72504	16181	5648	1320	

LHCb H→cc

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Mass Resolution

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Mass Resolution

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(ns)\gamma$

Phys.Rev.Lett. 114 (2015) 12, 121801

$h/Z \rightarrow J/\psi\gamma$ and $h/Z \rightarrow Y(nS)\gamma$: Results

Phys.Rev.Lett. 114 (2015) 12, 121801

	$95\% \ CL_s \ Upper \ Limits$							
	J/ψ $\Upsilon(1S)$ $\Upsilon(2S)$ $\Upsilon(3S)$ $\Sigma^n \Upsilon(3S)$							
		$\mathcal{B}\left(Z\to \mathcal{Q}\right)$	$(2\gamma) [\ 10^{-6} \]$					
Expected	Expected $2.0^{+1.0}_{-0.6}$ $4.9^{+2.5}_{-1.4}$ $6.2^{+3.2}_{-1.8}$ $5.4^{+2.7}_{-1.5}$ $8.8^{+4.7}_{-2.5}$							
Observed	2.6	3.4	5.4	7.9				
		$\mathcal{B}(H \to \mathcal{Q})$	$(2\gamma) [\ 10^{-3}]$					
Expected	Expected $1.2^{+0.6}_{-0.3}$ $1.8^{+0.9}_{-0.5}$ $2.1^{+1.1}_{-0.6}$ $1.8^{+0.9}_{-0.5}$ $2.$							
Observed	1.5	1.3	1.9	1.3	2.0			
$\sigma (pp \to H) \times \mathcal{B} (H \to \mathcal{Q} \gamma) \text{ [fb]}$								
Expected	26^{+12}_{-7}	38^{+19}_{-11}	45_{-13}^{+24}	38^{+19}_{-11}	54_{-15}^{+27}			
Observed	33	29	41	28	44			

95% CL upper limits on decay Branching Ratios:

- ▶ $\mathcal{O}(10^{-3})$ for Higgs boson (SM production)
- $\triangleright \mathcal{O}(10^{-6})$ for Z boson

Indicate non-universal Higgs boson coupling to quarks

[Phys.Rev. D92 (2015) 033016, JHEP 1508 (2015) 012]

- ▷ CMS obtained the same 95% CL upper limit: BR[H \rightarrow (J/ ψ) γ] <
 - 1.5x10⁻³ [Phys.Lett. B753 (2016) 341]

Background

52

- Dominated by QCD production γ+jet and multi-jet events
- **Exclusive "peaking" backgrounds** (e.g. $h/Z \rightarrow \mu \mu \gamma_{FSR}$) estimated to be negligible **Nonparametric data-driven model**; same procedure as in $h/Z \rightarrow J/\psi \gamma$

$h \rightarrow \gamma^* \gamma \rightarrow II\gamma$ and $h \rightarrow J/\psi\gamma$

▶ used 19.7 fb⁻¹ at 8 TeV

Ξ Event Selection [for $h \rightarrow J/\psi\gamma$]

- ▶ single muon and a photon, both p_T>22 GeV
- |η_μ|<2.4, p_{Tμ}>23,4 GeV, p_{Tμμ}>40 GeV
- ▶ |η_Y|<1.44, p_{TY}>40 GeV
- \blacktriangleright µµ and γ isolation,
- ▶ 2.9 < m_{µµ} < 3.3 GeV</p>
- $\triangleright \Delta R(\mu, \gamma) > 1$ for each muon

muon impact parameter requirements

Source	Uncertainty
Integrated luminosity (ref. [37])	2.6%
Theoretical uncertainties:	
PDF	2.6-7.5%
Scale	0.2–7.9%
$\mathrm{H} o \gamma^* \gamma o \ell \ell \gamma$ branching fraction	10%
Experimental uncertainties:	
Pileup reweighting	0.8%
Trigger efficiency, μ (e) channel	4 (2)%
Muon reconstruction efficiency	11%
Electron reconstruction efficiency	3.5%
Photon reconstruction efficiency	0.6%
$m_{\ell\ell\gamma}$ scale, μ (e) channel	0.1 (0.5)%
$m_{\ell\ell\gamma}$ resolution, μ (e) channel	10 (10)%

$h \rightarrow \gamma^* \gamma \rightarrow II\gamma$ and $h \rightarrow J/\psi\gamma$

I $h \rightarrow J/\psi\gamma$: fit over the 110-150 GeV mass range Background: 2nd degree polynomial Signal: Crystal Ball + Gaussian No excess above background observed 95% CL upper limit $H \rightarrow \gamma^* \gamma \rightarrow II\gamma$: 6.7(5.9)xSM 95% CL upper limit BR(H \rightarrow J/ $\psi\gamma$) < 1.5x10⁻³ ▶ 540 times the SM prediction

Sample	Signal events before selection	Signal events after selection	Number of events in data
1	$m_{\rm H} = 125{ m GeV}$	$m_{\rm H} = 125 {\rm GeV}$	$120 < m_{\ell\ell\gamma} < 130 \text{GeV}$
μμγ	13.9	3.3	151
$ee\gamma$	25.8	1.9	65
$(J/\psi \rightarrow \mu\mu)\gamma$	$0.065(J/\psi) + 0.32$ (non-res.)	$0.014(J/\psi) + 0.078$ (non-res.)	12

Events/2.0 GeV

Charm Tagging

Quark/Lepton Flavour Violation

Indirect constraints from low-energy data; certain transitions still loosely constrained[JHEP 03

- (2013) 026; Phys.Lett. B712 (2012) 386]
- QFV: constraints from flavour physics
- ▶LFV: constraints from $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu/e\gamma$, μ/e g-2, EDM ▶BR(H $\rightarrow e\mu$)<10⁻⁸; BR(H $\rightarrow e\tau$)≲10%; BR(H $\rightarrow \mu\tau$)≲10%
- LFV CMS Run 2 95% CL upper limit with 35.9 fb⁻¹
 - ▶ BR(h→µт)<0.25% (0.25%)</p>
 - ▶ BR(h→et)<0.61% (0.37%)</p>
- QFV ATLAS Run 2 95% CL upper limit with 36.1 fb⁻¹
 - ▶ in ttbar events looking for t→qh
 - hadronic and leptonic decays of the W boson used
 - ▶ BR(h→ch)<0.22% (0.16%)</p>
 - ▶ BR(h→uh)<0.24% (0.17%)</p>

UNIVERSITY^{OF} BIRMINGHAM 56

Higgs boson-fermion coupling

first direct evidence

 π^0

- Backgrounds
 - \ge Z \rightarrow TT dominant [embedding]
 - ▶ "Fakes": Multijet, W+jets, top [data-driven]
 - "Other": Dibosons/H->WW* [MC]
- Sensitivity mostly VBF and boosted topologies
 - Sub-channels: TlepTlep, TlepThad, ThadThad
 - Catergories based on event topology
 - Multivariate techniques used either as BDT or multi-dimensional fits

10⁵

10⁴

 10^{2}

10

h→bb

top quark

0

ATLAS+CMS

2σ interval

2

UNIVERSITYOF BIRMINGHAM 59

3

Parameter value

🔫 ATLAS - CMS — 1σ interval

[JHEP 08 (2016) 045]

top quark

top quark

h→µµ/ee

 $h \rightarrow \mu \mu$ best available probe for second generation fermions

- BR_{SM}~2·10⁻⁴(125GeV)
- simple final state
- ▶ S/B ~0.1-0.4%
- ▶ backgrounds: $Z/\gamma^* \rightarrow \mu\mu$, top, dibosons
- ▶ categorisation
 - ≥2x VBF (≥2jets+MVA)
 - ▶ main variables: m_{jj}, pT_{µµ}, Δη_{jj}, ΔR_{jj}, ...
- ▶ 6x ggF categories based on pT and η
- Parametric background Model: BW⊗Gaus+Exp/m³
- ▶95% CL upper limit @m_H=125 GeV:
 - ▶ ATLAS: 2.8 (2.9)xSM [Run 1+2] CMS: 7.4 (6.5)xSM [Run 1]

	S	В	S/\sqrt{B}	FWHM	Data
Central low $p_{\rm T}^{\mu\mu}$	11	8000	0.12	$5.6 \mathrm{GeV}$	7885
Non-central low $p_{\rm T}^{\mu\mu}$	32	38000	0.16	$7.0~{\rm GeV}$	38777
Central medium $p_{\rm T}^{\bar{\mu}\mu}$	23	6400	0.29	$5.7~{\rm GeV}$	6585
Non-central medium $p_{\rm T}^{\mu\mu}$	66	31000	0.37	$7.1~{\rm GeV}$	31291
Central high $p_{\rm T}^{\mu\mu}$	16	3300	0.28	$6.3~{ m GeV}$	3160
Non-central high $p_{\rm T}^{\mu\mu}$	40	13000	0.35	$7.7~{\rm GeV}$	12829
VBF loose	3.4	260	0.21	$7.6~{\rm GeV}$	274
VBF tight	3.4	78	0.38	$7.5~{\rm GeV}$	79

pT_{μμ}<15 GeV,15<pT_{μμ}<50 GeV,pT_{μμ}>50 GeV

PRL 119 (2017) 051802

h→µµ/ee

Closing in on h \rightarrow µµ!

- Expected significance for Run 3 and HL-LHC
 - 2.3σ for 300 fb⁻¹ and 7.0σ for 3000 fb⁻¹
 - Conservative extrapolation (no IBL, Run 1 analysis)
- Run 2 result shows improved sensitivity wrt extrapolation
- \blacktriangleright Evidence for h \rightarrow µµ possible with Run 3
 - Even earlier with further improvements?
- HL-LHC will be needed for detailed studies

▶h→ee: extremely rare decay in SM ▶ BR_{SM}(h→µµ)/BR_{SM}(h→ee) ~ 4×10^4 \triangleright CMS performed a search for h \rightarrow µµ/ee with Run 1

▶95% CL upper limit BR(h→ee)<1.9·10⁻³

\mathcal{L} [fb ⁻¹]	300	3000
N _{ggH}	1510	15100
$N_{\rm VBF}$	125	1250
N_{WH}	45	450
N _{ZH}	27	270
N _{ttH}	18	180
N _{Bkg}	564000	5640000
Δ_{Bka}^{sys} (model)	68	110
Δ_{Bkg}^{sys} (fit)	190	620
Δ_{S+B}^{stat}	750	2380
Signal significance	2.3σ	7.0σ
$\Delta \mu / \mu$	46%	21%

ATLAS-PHYS-PUB-2013-014

700