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Quarkonic CPV insufficient

Leptonic CPV (LCPV) unknown

By Rainer Klute/Arpad Horvath/MissMJ FNAL
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Neutrino Oscillations

PMNS matrix
Pontecorvo–Maki–Nakagawa–Sakata
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Neutrino Oscillations

PMNS matrix

θ
ij 
≠ 0, δ

CP
-phase irreducible → leptonic CP violation 

With a ν
µ
 beam

“CP-odd term” in appearance channels allow extraction of δ
CP

 using 

neutrino and anti-neutrino beams, up to ±30% effect at T2K – unique 
opportunities with accelerator neutrinos

Neutrino (flavor) oscillations depend on mixing angles, δ
CP

-phase and mass differences.  

PMNS matrix
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by CPT symmetry
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Neutrino Oscillations

PMNS matrix

θ
ij 
≠ 0, δ

CP
-phase irreducible → leptonic CP violation 

With a ν
µ
 beam

Neutrino (flavor) oscillations depend on mixing angles, δ
CP

-phase and mass differences.  

PMNS matrix

flip sign

by CPT symmetry

CP-odd term in appearance channels allow extraction of δ
CP

 using neutrino 

and anti-neutrino beams – unique opportunities with accelerator neutrinos

solar + KamLAND et al.
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static nucleon target
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Quasi-elastic scattering (QE)

charged current (CC) ν → l'

quasi-elastic (QE) N → N'

static nucleon target
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charged current (CC) ν → l'

quasi-elastic (QE) N → N'

detection 
E

ν
 reconstruction

Quasi-elastic scattering (QE)

static nucleon target
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nuclear target
(bound nucleon)

Fermi motion (FM) biases E
ν
 reconstruction
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nuclear target
(bound nucleons)

Fermi motion (FM) biases E
ν
 reconstruction

Multinucleon correlations: 
cross section unknown, strong bias to all final-state kinematics

● Impulse approximation: independent particles
● In particle-hole excitation:

➔ RPA (random phase approximation): sum of 1p1h 
excitation (over all pairs)  ~ ground state correlations 
(long range)

➔ npnh (n≥2): sub-leading terms in ph expansion ~ 
multinucleon correlations (short range)
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Science 320 (2008) 1476-1478 

initial correlation  
large relative motion

nuclear target
(bound nucleons)

Fermi motion (FM) biases E
ν
 reconstruction

Multinucleon correlations: 
cross section unknown, strong bias to all final-state kinematics

● Impulse approximation: independent particles
● In particle-hole excitation:

➔ RPA (random phase approximation): sum of 1p1h 
excitation (over all pairs)  ~ ground state correlations 
(long range)

➔ npnh (n≥2): sub-leading terms in ph expansion ~ 
multinucleon correlations (short range)
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Resonance production (RES) 

nuclear target

charged current (CC) ν → l'

QE-like N → N'
including resonance production (RES) ∆ → N'π followed by π absorption 

Fermi motion (FM) biases E
ν
 reconstruction

Multinucleon correlations: 
cross section unknown, strong bias to all final-state kinematics
QE-like: π absorbed in nucleus ← final-state interaction (FSI)
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nuclear emission

nuclear target

charged current (CC) ν → l'

Fermi motion (FM) biases E
ν
 reconstruction

Multinucleon correlations: 
cross section unknown, strong bias to all final-state kinematics
QE-like: π absorbed in nucleus ← final-state interaction (FSI)
FSI → energy-momentum transferred in nucleus, possible nuclear emission

QE-like N → N'
including resonance production (RES) ∆ → N'π followed by π absorption 
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   quasielastic
– binding energy

– Fermi motion

– Final-state interactions

– multinucleon correlations

Neutrino 
energy 
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Source: http://www-sk.icrr.u-tokyo.ac.jp/sk/detector/image-e.html

Super-Kamiokande

● 50 kt water Cherenkov
● 11129 20-inch PMTs in inner 

detector; 1885 8-inch PMTs in 
outer veto detector
→ time and amplitude of 
Cherenkov light

µ, e identification
→ detect propagated ν from J-PARC
→ E

ν
 rec. from µ/e kinematics 

http://www-sk.icrr.u-tokyo.ac.jp/sk/detector/image-e.html
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Source: http://www.ps.uci.edu/~tomba/sk/tscan/th

e±µ±

● 50 kt water Cherenkov
● 11129 20-inch PMTs in inner 

detector; 1885 8-inch PMTs in 
outer veto detector
→ time and amplitude of 
Cherenkov light

→ E
ν
 rec. from µ/e kinematics

→ proton not seen 

N N'

µ-/µ+/e/e+ν
µ
/ν

µ
/ν

e
/ν

e

W

CCQE

Super-Kamiokande

http://www.ps.uci.edu/~tomba/sk/tscan/th
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Near detector
Source: http://www.fnal.gov/pub/today/archive/archive_2004/today04-09-13.html

Far detector
Source: http://www.interactions.org/cms/?pid=2100&image_no=FN0095

MINOS

http://www.fnal.gov/pub/today/archive/archive_2004/today04-09-13.html
http://www.interactions.org/cms/?pid=2100&image_no=FN0095
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Side

Overhead

Charge deposit

Steel-Scintillator Sampling Calorimeters:
Charged lepton: full kinematics
Proton: energy deposit 

Source: http://www.hep.phy.cam.ac.uk/~thomson/gallery.html

MINOS

http://www.hep.phy.cam.ac.uk/~thomson/gallery.html


Source: http://vmsstreamer1.fnal.gov/VMS_Site_03/VMSFlash/090924Minerva/index.htm

MINERvA

http://vmsstreamer1.fnal.gov/VMS_Site_03/VMSFlash/090924Minerva/index.htm
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Nucl.Instrum.Meth. A743 (2014) 130-159

Scintillator tracker
Charged lepton: seen
Proton: track

MINERvA
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Nucl.Instrum.Meth. 676 (2012) 44-49, Nucl.Instrum.Meth. A743 (2014) 130-159

Scintillator tracker:
Charged lepton: full kinematics
Proton: full kinematics (full acceptance)

MINERvA
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Off-axis
beam

UA1 dipole
Magnet (0.2T)

T2K off-axis near detector (ND280)
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P0D

TPC

TPC

TPC

FGD1

FGD2

P0D: Pi0 Detector
contains H

2
O targets

Tracker:
● FGD: Fine-Grained Detector

1. plastic scintillator C
8
H

8
 

target 
2. C

8
H

8
 + H

2
O target

● TPC

ECAL: 
surrounding P0D and tracker

Side Muon Range Detector: 
in magnet yokes

→ 
● Charged lepton: full 

kinematics
● Proton: full kinematics (high 

resolution, partial acceptance)
 

DS ECAL

T2K off-axis near detector (ND280)
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interaction dynamics

nuclear effects

nuclear targets

– quasielastic

– resonant

– DIS
– binding energy

– Fermi motion

– Final-state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

Neutrino 
energy X

References: 
Phys.Rev. C94 (2016) no.1, 015503
arXiv:1602.06730
arXiv:1606.04403
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Quasi-elastic scattering (QE): 

ω: energy transfer
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Resonance production (RES): 

ω: energy transfer
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Deep inelastic scattering (DIS): nucleon breaks up 

ω: energy transfer
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ω: energy transfer

For QE and RES (nucleon not breaking up), 
ω “saturates” when E

ν
 > 0.5 GeV

[Phys.Rev. C94 (2016) no.1, 015503]
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In QE and RES 
● Lepton retains most of the increase of E

ν

● Leptonic kinematics much more E
ν
-dependent than 

hadronic ones

Source: http://www.wikihow.com/Pump-a-Spalding-Neverflat-Basketball

ν

N

l'

For QE and RES (nucleon not breaking up), 
ω “saturates” when E

ν
 > 0.5 GeV

[Phys.Rev. C94 (2016) no.1, 015503]

ω: energy transfer

http://www.wikihow.com/Pump-a-Spalding-Neverflat-Basketball
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Transverse kinematic imbalances
– a neutrino shadow play



Source: http://zhejiangpiying.sokutu.com/tupian.html

To make Neutrino Shadow Play, we need 
✔ beam of light
✔ screen

Transverse kinematic imbalances
– a neutrino shadow play



To make Neutrino Shadow Play, we need 
✔ beam of light → accelerator
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Source: http://zhejiangpiying.sokutu.com/tupian.html

Transverse kinematic imbalances
– a neutrino shadow play



To make Neutrino Shadow Play, we need 
✔ beam of light → accelerator
✔ screen → transverse plane

Source: http://zhejiangpiying.sokutu.com/tupian.html

Transverse kinematic imbalances
– a neutrino shadow play



To make Neutrino Shadow Play, we need 
✔ beam of light → accelerator
✔ screen → transverse plane

Static nucleon target

Source: http://zhejiangpiying.sokutu.com/tupian.html

Transverse kinematic imbalances
– a neutrino shadow play



To make Neutrino Shadow Play, we need 
✔ beam of light → accelerator
✔ screen → transverse plane

Source: http://zhejiangpiying.sokutu.com/tupian.html

Nuclear target

Transverse kinematic imbalances
– a neutrino shadow play



To make Neutrino Shadow Play, we need 
✔ beam of light → accelerator
✔ screen → transverse plane

Nuclear target

Source: http://zhejiangpiying.sokutu.com/tupian.html

Transverse kinematic imbalances
– a neutrino shadow play
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Nuclear targetStatic nucleon target

Transverse kinematic imbalances
– a neutrino shadow play
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● In given acceptance, overall spectral shapes not sensitive to FSIs.
● Nuclear effects difficult to observe on top of neutrino-nucleon kinematics.

[arXiv:1608.04655]

MINERvA measurement of single-transverse kinematic imbalances
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● More sensitive to FSIs
● Sensitivity achieved by dedicated momentum 

cuts and corrections.
[arXiv:1608.04655]

MINERvA measurement of single-transverse kinematic imbalances
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Transverse Fermi motion

(transverse projected) momentum transfer in
● initial-state multinucleon correlation, and
● final-state interaction 

T2K measurement of single-transverse kinematic imbalances
Preliminary, Progress reports: 

arXiv:1605.00179, 1610.05077
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Transverse Fermi motion

(transverse projected) momentum transfer in
● initial-state multinucleon correlation, and
● final-state interaction 

Preliminary, Progress reports: 
arXiv:1605.00179, 1610.05077

T2K measurement of single-transverse kinematic imbalances
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Fermi motion: flat

Preliminary, Progress reports: 
arXiv:1605.00179, 1610.05077

T2K measurement of single-transverse kinematic imbalances
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Transversely “accelerated” or “decelerated”

“acceleration”

FSI dynamics

Preliminary, Progress reports: 
arXiv:1605.00179, 1610.05077

T2K measurement of single-transverse kinematic imbalances
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“deceleration”“acceleration”

Transversely “accelerated” or “decelerated”

FSI dynamics

Preliminary, Progress reports: 
arXiv:1605.00179, 1610.05077

T2K measurement of single-transverse kinematic imbalances
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√

Transversely “accelerated” or “decelerated”

FSI dynamics

“deceleration”

Preliminary, Progress reports: 
arXiv:1605.00179, 1610.05077

T2K measurement of single-transverse kinematic imbalances
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● Large discrepancy between NEUT and GENIE
➢ not seen in single-particle kinematics.   

 
● Highlighted GENIE features (“collinear 

enhancement”) all originate from its FSI model, see 
discussions in [Phys.Rev. C94 (2016) no.1, 015503]: 

“the GENIE Collaboration suggested to investigate the 
effect of the elastic interaction of the hA FSI model.”

Preliminary, Progress reports: 
arXiv:1605.00179, 1610.05077

T2K measurement of single-transverse kinematic imbalances
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interaction dynamics

nuclear effects

nuclear targets

– quasielastic

– resonant

– DIS
– binding energy

– Fermi motion

– Final-state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

Neutrino 
energy 

X
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interaction dynamics

nuclear effects

nuclear targets

– quasielastic

– resonant

– DIS
– binding energy

– Fermi motion

– Final-state interactions

– C

– O

– Fe

– Pb

– Ar

– multinucleon correlations

Neutrino 
energy 

References: 
Phys.Rev. D92 (2015) no.5, 051302
arXiv:1512.09042
arXiv:1606.04403

  H

With                  target,

E
ν
             ∑ final-state energy.

A problem of                                 .

=
≠

H
nuclear

detector resolution
nuclear phy. + d.r.
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● Pure hydrogen

– Technical requirement: 

● bubble chamber (historical: 73, 79, 78, 82, 86)

– Safety issue: explosive

● “Since the use of a liquid H2 bubble chamber is excluded in the ND hall 
due to safety concerns, ...” [FERMILAB-PUB-14-022]

● In the last ~30 years there has been no new measurement of neutrino interactions on 
pure hydrogen.

Chin. Phys. C 38, 090001 (2014)

H
2
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Lepton-proton interaction → 3 charged particles: l p → l' X Y
– Leading order realization in standard model: 

Double-Transverse 
kinematic imbalance
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Lepton-proton interaction → 3 charged particles: l p → l' X Y
– Leading order realization in standard model: 

Double-Transverse 
kinematic imbalance



                                   Double-transverse momentum imbalance δp
TT

● H: 0 
● Heavier nuclei: irreducible symmetric broadening

● by Fermi motion O(200 MeV)
● further by FSI

● Hydrogen shape is only detector smearing. 
● With good detector resolution, hydrogen yield can be extracted. 
● With very good res., event-by-event selection of ν-H interaction is possible.

Phys.Rev. D92 (2015) no.5, 051302
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● Aim at first neutrino-pure hydrogen cross section measurement since 1986
✔ Signal shape well known from detector simulation.  
✔ Background can be further constrained by single-transverse kinematic imbalances 

and measurements w/ pure nuclear target, e.g. graphite.
● Precise probe of nuclear effects in pion production via H/C cross section ratio: detector 

systemic uncertainties largely canceled (as C, H in same molecule).

Work in progress, Progress reports: 
arXiv:1605.00154, 1610.06244

T2K measurement of double-transverse kinematic imbalances
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arXiv:1512.09042

2× better tracking res.

✔ Requirement on nuclear physics decreases as resolution improves! Only need to 
look at |δp

TT
|<O(10 MeV) region.

T2K performance projection
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Ideal acceptance w/ ideal tracking+PID

3-particle final state: µ, p, π+

E
ν
 reconstructed as sum of final-state energy

H excl. pπ+ signal 
➢ Fraction: ~ 20% (blue-shifted peak) – 10% (tail)

Recipe for nuclear-free neutrino energy spectra 
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Ideal acceptance w/ ideal tracking+PID

3-particle final state: µ, p, π+

E
ν
 reconstructed as sum of final-state energy

H excl. pπ+ signal 
➢ Fraction: ~ 20% (blue-shifted peak) – 10% (tail)
➢ No (nuclear) bias in reconstructed E

ν
➢ Can be extracted (statistically in realistic case)
➢ σ only nucleon cross section, Φ=N/(σ ∆Ε

ν
)

➔ both Φ and E
ν
 nuclear-free

➔ require tracking, PID (only needed for Ε
ν
 

calculation), νH excl. pπ+ x-sec

Recipe for nuclear-free neutrino energy spectra 
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Ideal acceptance w/ ideal tracking+PID

3-particle final state: µ, p, π+

E
ν
 reconstructed as sum of final-state energy

H excl. pπ+ signal 
➢ Fraction: ~ 20% (blue-shifted peak) – 10% (tail)
➢ No (nuclear) bias in reconstructed E

ν
➢ Can be extracted (statistically in realistic case)
➢ σ only nucleon cross section, Φ=N/(σ ∆Ε

ν
)

➔ both Φ and E
ν
 nuclear-free

➔ require tracking, PID (only needed for Ε
ν
 

calculation), νH excl. pπ+ x-sec

Recipe for nuclear-free neutrino energy spectra 

Same procedure for diffe
rential cross s

ections o
n W, Q

2 , etc. 
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Outline

1. Understanding matter-antimatter asymmetry with neutrinos

2. Nuclear effects in neutrino-nucleus interactions

3. Measuring neutrino interactions

4. A neutrino shadow play

Act One: Neutrino energy independent measurement of nuclear 
effects

Act Two: Nuclear effect independent measurement of neutrino 
energy spectra

5. Summary
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Summary
● Transverse kinematic imbalance = nuclear effects

– A correlation between final-state lepton and hadrons:

● In the transverse plane, lepton kinematics is used to cancel out nucleon level hadron kinematics; 
the rest is nuclear effects. 

● Least susceptible to neutrino energy and therefore flux uncertainty.
– Single transverse kinematic imbalances: separate initial- and final-state nuclear effects

– Double transverse kinematic imbalance:

● Revive ν-H interaction measurements

● Modern measurement of ν-nucleon fundamental interaction
● Nuclear-free neutrino beam flux determination

● New trend in neutrino cross section measurements

– Explore different interaction channels with various final-state kinematics

– More precise probe of nuclear effects with semi-inclusive, exclusive variables

– Final-state correlations
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Source: http://www.cnhubei.com/ztmjys-pyts

谢谢！ Thank you!

http://www.cnhubei.com/ztmjys-pyts
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The T2K Experiment
Japan Proton Accelerator 

Research Complex (J-PARC)

Diagram by Kirsty Duffy
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The T2K Experiment

Charge selection on neutrino parents 
→ ν or ν mode

Japan Proton Accelerator 
Research Complex (J-PARC)

Phys.Rev.Lett. 116 (2016) no.18, 181801 

Diagram by Kirsty Duffy
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The T2K Experiment

Charge selection on neutrino parents 
→ ν or ν mode

Japan Proton Accelerator 
Research Complex (J-PARC)

Phys.Rev.Lett. 116 (2016) no.18, 181801 

Diagram by Kirsty Duffy
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BEAM

Crossed arrays of 9-ton iron-scintillator detectors 
➔ Monitor neutrino beam stability and beam spatial 

profile
➔ estimate beam flux uncertainty
➔ stand-alone cross-section measurements

The T2K Experiment

BEAM

Japan Proton Accelerator 
Research Complex (J-PARC)

Diagram by Kirsty Duffy
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The T2K Experiment

BEAM
Off-axis neutrino beams:
Reduce dependence on pion energy → narrow-band

Spectrum peak at maximum disappearance @SK

Japan Proton Accelerator 
Research Complex (J-PARC)

Phys.Rev. D87 (2013) no.1, 012001

Diagram by Kirsty Duffy
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