

皮影 Shadow play Source: http://www.cnhubei.com/ztmjys-pyts

### Neutrino Shadow Play

Xianguo LU/ 卢显国 University of Oxford Particle Physics Seminar, University of Liverpool Liverpool 22 Mar 2017

## Outline

- 1. Understanding matter-antimatter asymmetry with neutrinos
- 2. Nuclear effects in neutrino-nucleus interactions
- 3. Measuring neutrino interactions
- 4. A neutrino shadow play

Act One: Neutrino energy independent measurement of nuclear effects

Act Two: Nuclear effect independent measurement of neutrino energy spectra

5. Summary







Early Universe





#### **Material World**



#### Matter-antimatter asymmetric Sakharov Conditions:

Baryon number violation C- and CP-symmetry Violation (CPV) Interactions out of thermal equilibrium

#### Antimaterial World

NASA-HQ-GRIN NGC 4414

#### Early Universe

Present

Time



## Matter-antimatter asymmetric **Sakharov Conditions:**

Baryon number violation C- and CP-symmetry Violation (CPV) Interactions out of thermal equilibrium

#### **Material World**





By Rainer Klute/Arpad Horvath/MissMJ FNAL



#### **Antimaterial World**

Leptonic CP Symmetry









LCPV







 $\theta_{12} \neq 0$ 









CP-odd term in appearance channels allow extraction of  $\delta_{CP}$  using neutrino and anti-neutrino beams



CP-odd term in appearance channels allow extraction of  $\delta_{CP}$  using neutrino and anti-neutrino beams – unique opportunities with accelerator neutrinos











Neutrino energy reconstruction

# Outline

- 1. Understanding matter-antimatter asymmetry with neutrinos
- 2. Nuclear effects in neutrino-nucleus interactions
- 3. Measuring neutrino interactions
- 4. A neutrino shadow play

Act One: Neutrino energy independent measurement of nuclear effects

Act Two: Nuclear effect independent measurement of neutrino energy spectra

5. Summary





quasi-elastic (QE)  $N \rightarrow N'$ 



Fermi motion (FM) biases  $E_v$  reconstruction



#### Fermi motion (FM) biases E<sub>v</sub> reconstruction

#### Multinucleon correlations:

cross section unknown, strong bias to all final-state kinematics



- Impulse approximation: independent particles
- In <u>particle-h</u>ole excitation:
  - RPA (random phase approximation): sum of 1p1h excitation (over all pairs) ~ ground state correlations (long range)
  - → npnh (n≥2): sub-leading terms in ph expansion ~ multinucleon correlations (short range)

#### Fermi motion (FM) biases E<sub>y</sub> reconstruction

#### Multinucleon correlations:

#### cross section unknown, strong bias to all final-state kinematics



18%

Single nucleons

n-n

n-p

%

\_\_\_\_ p-p

• In particle-hole excitation:

•

- RPA (random phase approximation): sum of 1p1h excitation (over all pairs) ~ ground state correlations (long range)
- npnh (n≥2): sub-leading terms in ph expansion ~ multinucleon correlations (short range)



Fermi motion (FM) biases  $E_v$  reconstruction Multinucleon correlations: cross section unknown, strong bias to *all* final-state kinematics QE-like:  $\pi$  absorbed in nucleus  $\leftarrow$  final-state interaction (FSI)



Resonance production (RES)  $\nu p \rightarrow \ell^- \Delta^{++} \rightarrow \ell^- p \pi^+$ 

QE-like N  $\rightarrow$  N' including resonance production (RES)  $\Delta \rightarrow$  N' $\pi$  followed by  $\pi$  absorption

Fermi motion (FM) biases E<sub>v</sub> reconstruction

Multinucleon correlations:

cross section unknown, strong bias to all final-state kinematics

QE-like:  $\pi$  absorbed in nucleus  $\leftarrow$  final-state interaction (FSI)

 $FSI \rightarrow$  energy-momentum transferred in nucleus, possible nuclear emission



QE-like N  $\rightarrow$  N' including resonance production (RES)  $\Delta \rightarrow$  N' $\pi$  followed by  $\pi$  absorption







nuclear targets



nuclear targets TABLE II. Systematic uncertainty on the predicted event rate at the far detector. T2K, arXiv:1701.00432 Source [%]  $\nu_e \mid \overline{\nu}_\mu$  $u_{\mu}$ – Pb  $\overline{\nu}_e$ ND280-unconstrained cross section 0.7 3.0 0.8 3.3 – Fe Flux and ND280-constrained cross section 2.8 2.9 3.3 3.2 3.9 2.4 3.3 3.1 SK detector systematics - Ar Final or secondary hadron interactions 1.5 | 2.5 | 2.1 | 2.5Total 5.0 5.4 5.2 6.2 0 C Neutrino interaction dynamics energy 911asielastic binding energy Fermi motion multinucleon correlations Final-state interactions

nuclear effects
nuclear targets TABLE II. Systematic uncertainty on the predicted event rate at the far detector. T2K, arXiv:1701.00432 Source [%]  $\nu_{\mu} \mid \nu_{e} \mid \overline{\nu}_{\mu}$ - Pb  $\overline{\nu}_e$ 0.7 3.0 0.8 3.3 ND280-unconstrained cross section – Fe Flux and ND280-constrained cross section 2.8 2.9 3.3 3.2  $3.9 \ 2.4 \ 3.3 \ 3.1$ SK detector systematics - Ar Final or secondary hadron interactions 1.5 | 2.5 | 2.1 | 2.5Total 5.0 5.4 5.2 6.2 0 С Neutrino interaction dynamics energy 911asielastic binding energy Fermi motion multinucleon correlations **Final-state interactions** nuclear effects

# Outline

- 1. Understanding matter-antimatter asymmetry with neutrinos
- 2. Nuclear effects in neutrino-nucleus interactions
- 3. Measuring neutrino interactions
- 4. A neutrino shadow play

Act One: Neutrino energy independent measurement of nuclear effects

Act Two: Nuclear effect independent measurement of neutrino energy spectra

5. Summary



## Super-Kamiokande

- 50 kt water Cherenkov
- 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector
   → time and amplitude of Cherenkov light



## Super-Kamiokande

- 50 kt water Cherenkov
- 11129 20-inch PMTs in inner detector; 1885 8-inch PMTs in outer veto detector
   → time and amplitude of Cherenkov light
- $\rightarrow E_v$  rec. from  $\mu/e$  kinematics  $\rightarrow$  proton not seen

![](_page_39_Figure_5.jpeg)

![](_page_39_Figure_6.jpeg)

## MINOS

![](_page_40_Picture_1.jpeg)

Near detector Source: http://www.fnal.gov/pub/today/archive/archive\_2004/today04-09-13.html

Far detector Source: http://www.interactions.org/cms/?pid=2100&image\_no=FN0095

## MINOS

![](_page_41_Figure_1.jpeg)

Source: http://www.hep.phy.cam.ac.uk/~thomson/gallery.html

Steel-Scintillator Sampling Calorimeters: Charged lepton: full kinematics Proton: energy deposit

## MINERvA

![](_page_42_Picture_1.jpeg)

Source: http://vmsstreamer1.fnal.gov/VMS\_Site\_03/VMSFlash/090924Minerva/index.htm

## MINERvA

![](_page_43_Figure_1.jpeg)

Scintillator tracker

### MINERvA

![](_page_44_Figure_1.jpeg)

Scintillator tracker:

Charged lepton: full kinematics Proton: full kinematics (full acceptance)

## T2K off-axis near detector (ND280)

![](_page_45_Picture_1.jpeg)

## T2K off-axis near detector (ND280)

![](_page_46_Picture_1.jpeg)

P0D: Pi0 Detector contains  $H_2O$  targets

#### Tracker:

- FGD: Fine-Grained Detector
  1. plastic scintillator C<sub>8</sub>H<sub>8</sub> target
  - 2.  $C_8H_8 + H_2O$  target

• TPC

## ECAL:

surrounding P0D and tracker

Side Muon Range Detector: in magnet yokes

 $\rightarrow$ 

- Charged lepton: full kinematics
- Proton: full kinematics (high resolution, partial acceptance)

# Outline

- 1. Understanding matter-antimatter asymmetry with neutrinos
- 2. Nuclear effects in neutrino-nucleus interactions
- 3. Measuring neutrino interactions
- 4. A neutrino shadow play

Act One: Neutrino energy independent measurement of nuclear effects

Act Two: Nuclear effect independent measurement of neutrino energy spectra

5. Summary

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

Quasi-elastic scattering (QE):

 $\nu n \to \ell^- p$ 

![](_page_50_Figure_0.jpeg)

Resonance production (RES):

 $\nu p \rightarrow \ell^- \Delta^{++} \rightarrow \ell^- p \pi^+$ 

![](_page_51_Figure_0.jpeg)

Deep inelastic scattering (DIS): nucleon breaks up

![](_page_52_Figure_0.jpeg)

For QE and RES (nucleon not breaking up),  $\omega$  "saturates" when  $E_{\nu} > 0.5$  GeV [Phys.Rev. C94 (2016) no.1, 015503]

![](_page_53_Figure_0.jpeg)

![](_page_53_Picture_1.jpeg)

Source: http://www.wikihow.com/Pump-a-Spalding-Neverflat-Basketball

For QE and RES (nucleon not breaking up),  $\omega$  "saturates" when  $E_{\nu} > 0.5$  GeV [Phys.Rev. C94 (2016) no.1, 015503] In QE and RES

- Lepton retains most of the increase of  $E_{v}$
- Leptonic kinematics much more  $E_v$ -dependent than hadronic ones

 $\vec{p}_{\ell'}$ 

![](_page_55_Figure_1.jpeg)

![](_page_55_Picture_2.jpeg)

Source: http://zhejiangpiying.sokutu.com/tupian.html

![](_page_55_Picture_4.jpeg)

To make *Neutrino Shadow Play*, we need • beam of light

screen

![](_page_56_Figure_1.jpeg)

![](_page_56_Picture_2.jpeg)

Source: http://zhejiangpiying.sokutu.com/tupian.html

![](_page_56_Picture_4.jpeg)

To make *Neutrino Shadow Play*, we need ✓ beam of light → accelerator ✓ screen

![](_page_57_Figure_1.jpeg)

![](_page_57_Picture_2.jpeg)

Source: http://zhejiangpiying.sokutu.com/tupian.html

![](_page_57_Picture_4.jpeg)

To make *Neutrino Shadow Play*, we need  $\cdot$  beam of light  $\rightarrow$  accelerator  $\cdot$  screen  $\rightarrow$  transverse plane

![](_page_58_Picture_1.jpeg)

Static nucleon target

![](_page_58_Picture_3.jpeg)

Source: http://zhejiangpiying.sokutu.com/tupian.html

![](_page_58_Picture_5.jpeg)

To make *Neutrino Shadow Play*, we need ✓ beam of light → accelerator ✓ screen → transverse plane

![](_page_59_Picture_1.jpeg)

![](_page_59_Picture_2.jpeg)

Source: http://zhejiangpiying.sokutu.com/tupian.html

![](_page_59_Picture_4.jpeg)

To make *Neutrino Shadow Play*, we need ✓ beam of light → accelerator ✓ screen → transverse plane

![](_page_60_Figure_1.jpeg)

![](_page_60_Picture_2.jpeg)

Source: http://zhejiangpiying.sokutu.com/tupian.html

![](_page_60_Picture_4.jpeg)

To make *Neutrino Shadow Play*, we need ✓ beam of light → accelerator ✓ screen → transverse plane

![](_page_61_Figure_1.jpeg)

![](_page_61_Figure_2.jpeg)

![](_page_62_Figure_1.jpeg)

- In given acceptance, overall spectral shapes not sensitive to FSIs.
- Nuclear effects difficult to observe on top of neutrino-nucleon kinematics.

[arXiv:1608.04655]

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_1.jpeg)

(transverse projected) momentum transfer in

- initial-state multinucleon correlation, and
- final-state interaction

![](_page_65_Figure_1.jpeg)

(transverse projected) momentum transfer in

- initial-state multinucleon correlation, and
- final-state interaction

Preliminary, Progress reports: arXiv:1605.00179, 1610.05077

![](_page_66_Figure_2.jpeg)

![](_page_66_Figure_3.jpeg)

Preliminary, Progress reports: arXiv:1605.00179, 1610.05077

![](_page_67_Figure_2.jpeg)

![](_page_67_Figure_3.jpeg)

Transversely "accelerated"

Preliminary, Progress reports: arXiv:1605.00179, 1610.05077

![](_page_68_Figure_2.jpeg)

Transversely "accelerated" or "decelerated"

Preliminary, Progress reports: arXiv:1605.00179, 1610.05077

![](_page_69_Figure_2.jpeg)

Preliminary, Progress reports: arXiv:1605.00179, 1610.05077

![](_page_70_Figure_2.jpeg)

![](_page_70_Figure_3.jpeg)

- Large discrepancy between NEUT and GENIE
  > not seen in single-particle kinematics.
- Highlighted GENIE features ("collinear enhancement") all originate from its FSI model, see discussions in [Phys.Rev. C94 (2016) no.1, 015503]: "the GENIE Collaboration suggested to investigate the effect of the elastic interaction of the hA FSI model."

# Outline

- 1. Understanding matter-antimatter asymmetry with neutrinos
- 2. Nuclear effects in neutrino-nucleus interactions
- 3. Measuring neutrino interactions
- 4. A neutrino shadow play

Act One: Neutrino energy independent measurement of nuclear effects

Act Two: Nuclear effect independent measurement of neutrino energy spectra

5. Summary




- Pure hydrogen
  - Technical requirement:
    - bubble chamber (historical: 73, 79, 78, 82, 86)



- Safety issue: explosive
  - "Since the use of a liquid H2 bubble chamber is excluded in the ND hall due to safety concerns, ..." [FERMILAB-PUB-14-022]
- In the last ~30 years there has been no new measurement of neutrino interactions on pure hydrogen.

- Leading order realization in standard model:

Double-Transverse kinematic imbalance

{X, Y} = {p,  $\pi^+$ } for  $\nu + p \rightarrow \ell^- + \Delta^{++}$ or {p,  $\pi^-$ } for  $\bar{\nu} + p \rightarrow \ell^+ + \Delta^0$ 



- Leading order realization in standard model:

Double-Transverse kinematic imbalance



- Leading order realization in standard model:

Double-Transverse kinematic imbalance



78

- Leading order realization in standard model:

Double-Transverse kinematic imbalance





Double-transverse momentum imbalance  $\delta p_{TT}$ 

- H: 0
- Heavier nuclei: irreducible symmetric broadening
  - by Fermi motion *O*(200 MeV)
  - further by FSI
- Hydrogen shape is only detector smearing.
  - With good detector resolution, hydrogen yield can be extracted.
  - With very good res., event-by-event selection of v-H interaction is possible.

## T2K measurement of double-transverse kinematic imbalances

Work in progress, Progress reports: arXiv:1605.00154, 1610.06244



- Aim at first neutrino-pure hydrogen cross section measurement since 1986
  - Signal shape well known from detector simulation.
  - Background can be further constrained by single-transverse kinematic imbalances and measurements w/ pure nuclear target, e.g. graphite.
- Precise probe of nuclear effects in pion production via H/C cross section ratio: detector systemic uncertainties largely canceled (as C, H in same molecule).

## T2K performance projection



✓ Requirement on nuclear physics decreases as resolution improves! Only need to look at  $|\delta p_{TT}| < O(10 \text{ MeV})$  region.





Ideal acceptance w/ ideal tracking+PID

3-particle final state:  $\mu$ , p,  $\pi^+$ 

 $E_{y}$  reconstructed as sum of final-state energy

H excl.  $p\pi^+$  signal

> Fraction: ~ 20% (blue-shifted peak) – 10% (tail)









# Outline

- 1. Understanding matter-antimatter asymmetry with neutrinos
- 2. Nuclear effects in neutrino-nucleus interactions
- 3. Measuring neutrino interactions
- 4. A neutrino shadow play

Act One: Neutrino energy independent measurement of nuclear effects

Act Two: Nuclear effect independent measurement of neutrino energy spectra

## 5. Summary

# Summary

### • Transverse kinematic imbalance = nuclear effects

- A correlation between final-state lepton and hadrons:
  - In the transverse plane, lepton kinematics is used to cancel out nucleon level hadron kinematics; the rest is nuclear effects.
  - Least susceptible to neutrino energy and therefore flux uncertainty.
- Single transverse kinematic imbalances: separate initial- and final-state nuclear effects
- Double transverse kinematic imbalance:
  - Revive v-H interaction measurements
  - Modern measurement of v-nucleon fundamental interaction
  - Nuclear-free neutrino beam flux determination
- New trend in neutrino cross section measurements
  - Explore different interaction channels with various final-state kinematics
  - More precise probe of nuclear effects with semi-inclusive, exclusive variables
  - Final-state correlations



Source: http://www.cnhubei.com/ztmjys-pyts

# BACKUP











Crossed arrays of 9-ton iron-scintillator detectors

- Monitor neutrino beam stability and beam spatial profile
- → estimate beam flux uncertainty
- → stand-alone cross-section measurements



# END

97

5139