SuperCDMS SNOLAB: status and prospects

Elias Lopez Asamar on behalf of the SuperCDMS Collaboration

AAP 2016, Liverpool, 2nd of December 2016

INTRODUCTION

Purpose: detect **galactic WIMPs** using semiconductor (**Ge**, **Si**) crystal detectors

Ionization+phonon measurements → *Recoil energy+particle identification*

Signal: single **atomic nucleus** from crystal lattice, recoiling after a WIMP interaction

Coherent neutrino scattering (CNS) produces the **same signal** as WIMPs

$$E_k \sim \text{keV}$$

INTRODUCTION

Backgrounds: from **environmental radioactivity** and **cosmic muons**:

- 1) **Electrons** from the crystal lattice, recoiling after X-ray or γ -ray interactions
- 2) **Charged particles** from nuclear disintegrations (mostly α and β decays)
- 3) Atomic nuclei from the crystal lattice, recoiling after neutron interactions

Small penetration if decay occurs outside the detector

Single neutron scatters mimic signal

Deposited energy splitted between **electron-hole pairs** and **prompt phonons**

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$

 $E_P = E_{P,prompt} + E_{P,recombination} = E_R$

	Ionization yield (Y)
Recoiling electron	1
Recoiling Ge nucleus	~0.3

Deposited energy splitted between **electron-hole pairs** and **prompt phonons**

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$
$$E_P = E_{P,prompt} + E_{P,recombination} = E_R$$

Ionization yield (\mathbf{Y}) enables **particle identification**

It is possible to know E_{R} and Y from E_{P} and N_{q}

An **applied electric field** (*E*) is required to separate the charge carriers

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$
$$E_P = E_R + \frac{q_e V N_q}{\epsilon} = E_R (1 + Y \frac{q_e V}{\epsilon})$$

 $E_{p} > E_{R}$ if voltage bias (V) is applied

$$E_{p} = g(V)E_{R}$$

An **applied electric field** (*E*) is required to separate the charge carriers

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$
$$E_P = E_R + q_e V N_q = E_R (1 + Y \frac{q_e V}{\epsilon})$$

 $E_{p} > E_{p}$ if voltage bias (V) is applied

It is possible to know E_{R} and Y from E_{P} and N_{q}

SUPERCDMS SNOLAB

Project proposal:

- Detectors with **full background rejection** capabilities (*iZIP*): **10 Ge**, **2 Si**
- Detectors with lowered energy thresholds (HV): 8 Ge, 4 Si

Project approved by US DoE as a low-mass WIMP search experiment

First **Ge HV detector** prototype (+copper housing)

SUPERCDMS SNOLAB

Project proposal:

- Detectors with **full background rejection** capabilities (*iZIP*): **10 Ge**, **2 Si**
- Detectors with lowered energy thresholds (HV): 8 Ge, 4 Si

SUPERCDMS SNOLAB

Project proposal:

- Detectors with **full background rejection** capabilities (*iZIP*): **10 Ge**, **2 Si**
- Detectors with lowered energy thresholds (HV): 8 Ge, 4 Si

Operating at cryogenic temperatures (< 15 mK)

Noise limits the lowest accessible E_{R}

However: Phonon signal can be amplified by increasing the voltage bias

Total phonon energy in presence of **voltage bias** (*V*):

$$E_{P} = E_{R} + \underbrace{q_{e}VN_{q}}_{\downarrow} = E_{R}(1 + Y\frac{q_{e}V}{\epsilon}) = g(V)E_{R}$$

$$\downarrow$$

$$contribution from the applied electric field$$

12

Total phonon energy in presence of **voltage bias** (*V*):

$$E_{P} = E_{R} + \underbrace{q_{e}VN_{q}}_{\leftarrow} = E_{R}(1 + Y\frac{q_{e}V}{\epsilon}) = \underbrace{g(V)}_{\leftarrow} E_{R}$$

$$\downarrow$$

$$contribution from the g(V) > 1$$

Total phonon energy in presence of **voltage bias** (*V*):

Phonon threshold (~typical noise fluctuations)

Total phonon energy in presence of **voltage bias** (*V*):

Phonon threshold (~typical noise fluctuations)

Note that only E_p can be amplified, but not N_q

Particle identification & fiducialisation compromised, $E_{_{R}}$ reconstruction requires assumptions on Y

HV technology successfully tested at SuperCDMS Soudan (CDMSlite)

Used ~70 V voltage bias

Exclusion limit calculated by assuming all events in signal region to be WIMPs

PREDICTED EVENT RATE (iZIP DETECTORS)

From **arXiv: 1610.00006**

Event selection: recoiling nucleus+single scattering+full fiducialisation

~0.5 events predicted in Si iZIP detectors between 2 and 10 keV for 5 years live time

PREDICTED EVENT RATE (HV DETECTORS)

From **arXiv: 1610.00006**

Event selection: single scattering+radial fiducialisation

PREDICTED SENSITIVITY

From **arXiv: 1610.00006**

Initial program: 5 years of operation (2020-2024), 80% live time

PREDICTED SENSITIVITY

From **arXiv: 1610.00006**

Initial program: 5 years of operation (2020-2024), 80% live time

Aiming towards **reaching the CNS floor** from solar neutrinos in future stages of the experiment

SUMMARY

- SuperCDMS SNOLAB using semiconductor detectors (Ge, Si)
- Payload: 25 kg (Ge), 3.6 kg (Si)
- 2 operation modes: iZIP (full discrimination), HV (lower threshold)
- First program: 5 years of operation (2020-2024)
- **CNS** dominating some spectrum intervals in **iZIP** detectors
- Plan to reach CNS floor from solar neutrinos in future stages of the experiment

THANK YOU...