

#### **Reinhild Yvonne Peters**

#### The University of Manchester





European Research Council Established by the European Commission





Introduction

Colour Flow

Angular Distributions

The Top and The Higgs

Summary

# Introduction

1



### **The Top Quark**

- Heaviest known elementary particle: m<sub>t</sub>~173GeV
- Standard Model:
  - Single or pair production
  - Electric charge +2/3 e
  - Short lifetime 0.5x10<sup>-24</sup>s
    - Bare quark no hadronization
  - ~100% decay into Wb
  - Large coupling to SM Higgs boson





#### **Top: From Discovery...**

Discovered in 1995 by CDF and DØ at Fermilab (with few events)





#### ...to Precision

Discovered in 1995 by CDF and DØ at Fermilab (with few events)





#### **Top Studies: Overview**





#### **Top Studies: Overview**





#### **Top Quark Pair Production**





#### **Top Quark Pair Production**





#### Final States in tt

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$  : Final states are classified according to W decay





## Final States in tt

 $t\bar{t} \rightarrow W^+bW^-\bar{b}$  : Final states are classified according to W decay

 $B(t \rightarrow W^+b) = 100\%$ 

**Top Pair Branching Fractions** 



*dilepton:* 2 isolated leptons; High missing E<sub>T</sub> from neutrinos; 2 b-jets



#### **Ideontification of b-Jets**

- Important tool to increase tt purity
- b-hadron: travels some millimeters before it decays
- Neural Network (MV1) combines properties of displaced tracks and displaced vertices





#### ATLAS-PHYS-PUB-2015-022

MANCHESTER

## Top Events as a Laboratory



#### Introduction to Colour Connection and Hadronization

- Quarks carry QCD color charge
  - But only colour singlets can be observed
    - For example W, Z, or bound states like hadrons
- Partons carrying color are color connected to partons with anti-colour



#### MANCHESTER 1824

#### **Color Flow between Jets**

- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles



- Particles created during hadronization should be concentrated along angular region spanned by the color connected partons
  - Transverse jet profiles should not be round
  - Shape influenced by direction of color flow!

#### MANCHESTER 1824

#### **Color Flow between Jets**

- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles



- Particles created during hadronization should be concentrated along angular region spanned by the color connected partons
  - Transverse jet profiles should not be round
  - Shape influenced by direction of color flow!



#### **Color Flow Observable**

- Construct a local observable, constructed from particles within a chosen jet cone: Jet pull  $\Delta \phi = \phi \phi_{J_1}$
- Pick a pair of jets in the event
- Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{E_T^i |r_i|}{E_T^{jet}} \vec{r_i}$$

- r<sub>i</sub>: position of jet component
   i relative to center of jet
- E<sub>T</sub><sup>i</sup>: transverse energy of component i
- E<sub>T</sub><sup>Jet</sup>: transverse energy of jet



Gallicchio, Schwartz, PRL 105, 022001 (2010)



#### **Color Flow Observable**

- Construct a local observable, constructed from particles within a chosen jet cone: Jet pull
- Pick a pair of jets in the event
- Build vectorial sum of jet components:

$$\vec{p} = \sum_{i} \frac{p_T^i |r_i|}{p_T^{jet}} \vec{r_i}$$

- r<sub>i</sub>: position of jet component
   i relative to center of jet
- p<sub>T</sub><sup>i</sup>: transverse momentum of component i
- p<sub>T</sub><sup>Jet</sup>: transverse momentum of jet



Gallicchio, Schwartz, PRL 105, 022001 (2010)



### **Colour Flow in Top**

- Top events as laboratory to test new tools
- Jets carry color, and are thus color connected to each other
  - Pairing of connection depends on nature of decaying particles





### **Colour Flow in Top**

Consider 4 variables in semileptonic tt events (>1 b-tagged jet)

- Two non-b-tagged jets:
  - Relative jet pull angles
  - Jet pull magnitude



- Two b-tagged jets
  - Relative jet pull angle





#### Analysis

- Correct distributions for detector effects
- 13 TeV analysis: use only track-jets
  - Have shown to have better resolution than calorimeter jets in 8 TeV analysis

PLB 750, 475-493 (2015)



Eur. Phys. J. C 78 (2018) 847

#### **Results for W Daughters**

Correction to stable particle-level (iterative Bayesian unfolding)



- Colour-flipped model disfavoured by the data (for this distribution  $\chi^2$ /NDF: 45.3/3; SM Powheg+Pythia8: 17.1/3)
- MC modeling has room for improvement

MANCHESTER



#### Theory

- Recent theory paper on theory prediction for Pull Angle
  - Inspired by our analyses



First theoretical predictions of pull

arXiv:1903.02275

# Angular Distributions

1



### **Spin Correlations**

- Top quarks: decay before fragmentation
  - Spin information preserved in decay products
- Hadron colliders: top quarks produced unpolarized, but
  - New physics could induce polarization
    - For example: new physics can cause forward-backward asymmetry  $\rightarrow$  more left-handed top quarks
  - Correlation between top and antitop quark can be measured





#### **Spin Corrleations**

- Measured spin correlation can change
  - Due to different decay





### **Analysis Strategy**

- Highest spin analyzing power: leptons form top decay
  - Use dileptonic tt events
    - Very clean samples
- Use  $\Delta \phi$  between both leptons
  - No kinematic event reconstruction required

- Full  $t\bar{t}$  event reconstruction for  $m_{t\bar{t}}$ 
  - For example neutrino weighting in ATLAS
    - Uses known top and W boson mass as constraints to explore missing neutrino information





#### **Analysis Strategy**

Unfolded differential measurements:

Parton-level

Particle level







### **Measured Distributions**

- Both ATLAS & CMS: fitted spin correlation higher than expected
  - ATLAS: 3.2 $\sigma$  from SM prediction of Powheg MC





#### **Template Fit**

Fitting spin and no-spin hypotheses to parton-level distributions



#### More measured distributions

- Result caused interest in field → new theory predictions
- NLO+EW agrees better with measurement, NNLO (but no EW corrections) worse again
  - NLO+EW: large scale uncertainties
  - Still open riddle what's exactly going on!
  - Need more calculations/measurements?
- Interpretations done in terms of EFT and SuSy models





MANCHESTER

#### **Other Measurements**



- More "direct" spin correlation measurement: Spin density matrix elements
  - Challenge: requires full event reconstruction
- ATLAS &CMS: Unfolded distributions extracted



MANCHESTER

"helicity"

#### MANCHESTER 1824

#### **Other Spin Measurements**

- All spin-density matrix elements measured
  - More to do to improve sensitivity





• Still more to do to understand the riddle of tt spin correlations!

# The Top and The Higgs

1

#### MANCHESTER 1824

## The Top and The Higgs

- Top and Higgs: Heaviest known elementary fermion and boson!
  - Top-Higgs Yukawa coupling: predicted to be ~1 in the SM
     → special role of top quark in electroweak symmetry breaking?
     → window to new physics?
     → metastable universe?
- Measuring top-Higgs Yukawa coupling directly: important! (indirectly: in H→γγ and gg→H)
  - Main channel: ttH







## The Top and The Higgs

- Last year: First observation of ttH! (first by CMS, then ATLAS; similar strategies, concentrating on ATLAS here)
- Combination of multiple channels:
  - Higgs decay to  $b\bar{b}$ ,  $WW^*$ ,  $\tau^+\tau^-$ ,  $\gamma\gamma$ ,  $ZZ^*$
  - Hadronic and/or leptonic top decays used



Phys. Lett. B 784 (2018) 173



## **Diphoton Channel**

- Define two regions: hadronic top decays or events with at least one charged lepton
  - $m_{\gamma\gamma}$ : has to be between 105 and 160GeV
- For each region: train BDTs





#### **ZZ Channel**

- Use events with at least 4 isolated charged leptons
  - Two regions: hadronic (both tops decay hadronically) and leptonic (at least one top decays leptonically)
  - BDT used on hadronic region



#### MANCHESTER 1824

#### **Multilepton Channel**

- Includes  $H \rightarrow WW$  (&ZZ) and  $H \rightarrow \tau \tau$  decays
- Many channels considered
  - Some use BDTs





## $\mathbf{H} \rightarrow \mathbf{b}\overline{\mathbf{b}}$ Channel

- Semileptonic and dileptonic channels considered
  - Separation in many different control and signal regions

MANCHESTER

- Very challenging analysis
  - Modeling of background ttbb





(1<sup>st</sup>, 2<sup>nd</sup>) jet Dilepton,  $\geq 4$  j

#### MANCHESTER 1824

### Semileptonic

- BDTs used enhancing significance
  - Reconstruction of event done with "reconstruction BDT" → access to variables using full events
- Fits including control regions
   → improves control over backgrounds







### Dileptonic

- Similar strategy as in semileptonic channel
  - Reconstruction of full event information more challenging due to two neutrinos





## tīH, H→bb̄ Results

Results already dominated by systematic uncertainties
 → background modeling of ttbb a main factor



MANCHESTER



#### Combination

- Combination of all channels: Observation of ttH!
  - Observed significance of  $5.8\sigma$







#### **Summary**

- Top Quark Physics: Probing the heaviest known elementary particle!
  - Jet pull: accessing colour-flow information between jets  $\rightarrow$  information on QCD colour-nature of mother particle
  - Precision measurement of spin correlations
    - probing the full top production and decay chain ever more precise

 $\rightarrow$  still an open riddle where the deviation from prediction comes from

- Top-Higgs: observation of ttH

   → new era of exploring the connection
   between heaviest elementary particles
- Everything compatible with SM so far
- Tops were, are and stay awesome  $\rightarrow$  much to learn about the SM and beyond



Backup



#### **Boosting algorithms**

Boosting algorithms important

- $\blacklozenge$  Higher collision energy  $\rightarrow$  more events can be boosted
- $\blacklozenge$  Production of heavy particles  $\rightarrow$  decay products can be boosted  $\rightarrow$  results in boosted regimes





#### **Colour Flow: Systematics**

| $\Delta \theta_{P} \left( i_{1}^{W}, i_{2}^{W} \right) \left[ \% \right]$ | $	heta_P\left(j_1^W, j_2^W ight)$ |             |             |            |  |  |
|---------------------------------------------------------------------------|-----------------------------------|-------------|-------------|------------|--|--|
| $-\circ_{F}(j_{1}^{*},j_{2}^{*})$ [70]                                    | 0.0 - 0.21                        | 0.21 - 0.48 | 0.48 - 0.78 | 0.78 - 1.0 |  |  |
| Hadronisation                                                             | 0.63                              | 0.22        | 0.27        | 0.09       |  |  |
| Generator                                                                 | 0.37                              | 0.24        | 0.50        | 0.06       |  |  |
| Colour Reconnection                                                       | 0.11                              | 0.26        | 0.03        | 0.53       |  |  |
| b-Tagging                                                                 | 0.35                              | 0.12        | 0.20        | 0.31       |  |  |
| Non-Closure                                                               | 0.25                              | 0.07        | 0.08        | 0.30       |  |  |
| ISR / FSR                                                                 | 0.32                              | 0.12        | 0.15        | 0.01       |  |  |
| Other                                                                     | 0.25                              | 0.20        | 0.11        | 0.18       |  |  |
| $\operatorname{JER}$                                                      | 0.12                              | 0.13        | 0.21        | 0.03       |  |  |
| $\operatorname{JES}$                                                      | 0.13                              | 0.06        | 0.13        | 0.07       |  |  |
| Tracks                                                                    | 0.09                              | 0.04        | 0.05        | 0.07       |  |  |
| Syst.                                                                     | 0.97                              | 0.52        | 0.68        | 0.72       |  |  |
| Stat.                                                                     | 0.22                              | 0.18        | 0.17        | 0.26       |  |  |
| Total                                                                     | 0.99                              | 0.55        | 0.71        | 0.76       |  |  |



#### **Spin Correlations: Systematics**

Table 5: Summary table of the effect of experimental systematic uncertainties on the  $f_{SM}$  extraction. Uncertainties which are smaller than the precision shown are included in the totals and the  $f_{SM}$  significance calculations.

|                                       |                  | $m_{t\bar{t}}$ range [GeV] |                               |                              |                        |  |
|---------------------------------------|------------------|----------------------------|-------------------------------|------------------------------|------------------------|--|
| Systematic                            | Inclusive        | $m_{t\bar{t}} < 450$       | $450 \leq m_{t\bar{t}} < 550$ | $550 \le m_{t\bar{t}} < 800$ | $m_{t\bar{t}} \ge 800$ |  |
| Matrix element                        | ±0.006           | ±0.11                      | ±0.064                        | ±0.01                        | ±0.3                   |  |
| Parton shower and hadronisation       | ±0.010           | ±0.02                      | ±0.005                        | ±0.01                        | ±1.4                   |  |
| Radiation and scale settings          | ±0.055           | ±0.05                      | ±0.061                        | ±0.23                        | < 0.1                  |  |
| PDF                                   | ±0.002           | < 0.01                     | ±0.003                        | ±0.01                        | < 0.1                  |  |
| Background modelling                  | ±0.009           | ±0.01                      | +0.014<br>-0.015              | ±0.01                        | ±0.1                   |  |
| Lepton ID and reconstruction          | ±0.008           | ±0.01                      | +0.030 -0.036                 | +0.03 -0.10                  | +0.5<br>-0.2           |  |
| <i>b</i> -tagging                     | +0.004<br>-0.003 | ±0.01                      | ±0.025                        | +0.04 -0.02                  | +0.1 -0.2              |  |
| Jet ID and reconstruction             | +0.014<br>-0.017 | $^{+0.02}_{-0.05}$         | +0.076<br>-0.093              | +0.17 -0.26                  | $^{+1.7}_{-0.6}$       |  |
| $E_{\rm T}^{\rm miss}$ reconstruction | < 0.001          | $^{+0.01}_{-0.02}$         | +0.042<br>-0.034              | +0.12 -0.14                  | +0.9<br>-0.7           |  |
| Pile-up effects                       | +0.013<br>-0.010 | < 0.01                     | +0.015<br>-0.019              | +0.07<br>-0.04               | +0.2 -0.4              |  |
| Luminosity                            | ±0.001           | < 0.01                     | +0.002 -0.000                 | < 0.01                       | < 0.1                  |  |
| MC statistical uncertainty            | ±0.005           | < 0.01                     | $\pm 0.007$                   | ±0.03                        | ±0.05                  |  |
| Total systematics                     | ±0.061           | +0.12<br>-0.13             | +0.13<br>-0.14                | +0.31<br>-0.41               | +2.5<br>-1.7           |  |