Deep Learning Foundations of Deep Neural Networks

Kurt Rinnert

Liverpool 13.06.2018

Overview

Feedforward Neural Networks

Training Neural Networks

Deep Neural Networks

Practical Considerations

Further Reading

We can only cover some basics here.

Feedforward Neural Networks

Training Neural Networks

Deep Neural Networks

Practical Considerations

Further Reading

Artificial Neuron

- Neuron pre-ativation (or input activation) $a(x) = b + \sum_{i} w_{i}x_{i} = b + \mathbf{w}^{T}\mathbf{x}$
- Neuron (output) activation $h(\mathbf{x}) = g(a(\mathbf{x})) = g(b + \sum_{i} w_i x_i)$
- **w** are the connection weights
- *b* is the neuron bias
- g() is the activation function

This is the basic building block of all that follows.

Linear Function: g(a) = a

- Range of *g* same as domain
- Not very interesting

Only linear transformations can be modeled.

Sigmoid Function:
$$g(a) = sigm(a) = \frac{1}{1 + exp(-a)}$$

- Maps the pre-activation *a* to [0, 1]
- Always positive
- Bounded
- Strictly increasing

Non-linear models possible.

tanh Function:
$$g(a) = tanh(a) = \frac{exp(a) - exp(-a)}{exp(a) + exp(-a)}$$

- Maps the pre-activation a to [-1, 1]
- Positive and negative
- Bounded
- Strictly increasing

Non-linear models possible.

Rectified Linear Function (Unit): $g(a) = \operatorname{reclin}(a) = \operatorname{relu}(a) = \max(0, a)$

- Bound below by 0
- No upper bound
- Monotonically increasing
- Tends to create "sparse" neurons

A very popular choice.

Capacity of a Single Neuron

- Can separate two classes...
- ...if separation is linear (hyperplane)
- Sigmoid activation allows for probability interpretation
- Cut at 0.5 for classification

x_1 w_1 $h(\mathbf{x})$ x_2 b b

A single neuron can act as a binary classifier.

Linear Classification Examples

Can be separated by a single neuron.

Non-Linear Example

Additional neurons can encode the transformation!

- Hidden layer pre-activation: $\mathbf{a}(\mathbf{x}) = \mathbf{b}^{(1)} + \mathbf{W}^{(1)}\mathbf{x}$
- Hidden layer activation: $\mathbf{h}^{(1)}(\mathbf{x}) = \mathbf{h}^{(1)}(\mathbf{a}(\mathbf{x}))$
- Output Layer:

 $y(x) = o(b^{(2)} + w^{(2)T}h^{(1)}x)$

The function o() is the output layer activation.

Foundations of Deep Learning - Liverpool, 13.06.2018

- Softmax as output activation: $y_j(\mathbf{x}) = o(\mathbf{a})_j = \frac{e^{a_j}}{\sum_{k=1}^{K} e^{a_k}}$ for j = 1, ..., K
- Strictly positive
- Sums to one

Softmax provides normalized probabilities.

Feedforward Neural Networks

Training Neural Networks

Deep Neural Networks

Practical Considerations

Further Reading

Empirical Risk Minimization

- Framework to design learning algorithms $\arg \min \frac{1}{T} \sum_{t} l(y(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)}) + \lambda \Omega(\boldsymbol{\theta})$
- **heta** is the set of all parameters
- $l(y(\mathbf{x}^{(t)}; \boldsymbol{\theta}), y^{(t)})$ is the loss function
- $\Omega(\boldsymbol{\theta})$ is a regularizer (penalizes certain values of $\boldsymbol{\theta}$)
- the loss function is an upper bound on the classification error

Learning is cast as optimization.

Stochastic Gradient Descent (SDG)

Algorithm for update after each seen example:

- initialize **0** (all parameters)
- Then, for *N* iterations (epochs):
- For each training example $(\mathbf{x}^{(t)}, \mathbf{x}^{(t)})$:
- $\Delta = -\Delta_{\theta} l(f(x^{(t)}, \theta), y^{(t)}) \lambda \Delta_{\theta} \Omega(\theta)$
- $\theta \leftarrow \theta + \alpha \Delta$

Meta parameters like α are not optimized!

Ingredients for SDG

To apply the algorithm wee need:

- The loss function $l(f(x^{(t)}, \theta), y^{(t)})$
- The parameter gradients, $\Delta_{\theta} l(f(x^{(t)}, \theta), y^{(t)})$ etc.
- The regularizer Ω and its gradiend $\Delta_\theta \Omega$
- An initialization method
- A method to compute the gradients in practice

Gradient computation is done by back-propagation.

L2 Regularization

$$\Omega(\theta) = \sum_{k} \sum_{i} \sum_{j} (W_{i,j}^{(k)})^2$$

- Only applied to weights, not biases
- · Causes weights to decay

Can be interpreted as a Gaussian prior.

Regularization

L1 Regularization

$$\Omega(\theta) = \sum_{k} \sum_{i} \sum_{j} |W_{i,j}^{(k)}|$$

- Only applied to weights, not biases
- Will push some weiths to exactly zero

Can be interpreted as a Laplacian prior.

high variance, low bias

This intuitively motivates regularization.

Foundations of Deep Learning - Liverpool, 13.06.2018

Feedforward Neural Networks

Training Neural Networks

Deep Neural Networks

Practical Considerations

Further Reading

Deep Neural Networks

- Instance of multilayer representation
- Each layer corresponds to "distributed" representation
- There motivations from biology (visual cortex)
- Feature extraction
- Grouping of features
- Recognition of classes

More compact representation that single layer.

Example: MNIST, Handwritten Digits

Multiple classes. Feature extraction.

2	1	0	-	-	0	.k	Ç	1	\overline{Z}	-	1	3	1
£	•	J.	4	£.	i.	0	3	6	3	2	2	¥	0
3	Ū,	4	-	Ċ	1	0	J	\$	3	9	3	0	1
4	a.	S.	3	3	Ð	1	2		1	C	1	1	×
Ċ.		9	Ø)	6	l	\mathcal{O}	۲	e	13	1	1	
đ.	Ø	1		Ą	1	R		1	0	ł	1		The second
ê	2	3	3	1	\mathbf{v}_{i}				2	nj	1	(2)	£
	2		4	21	Ð	è	2	0	\mathbb{Z}^{1}_{-}	۲		0	2
)	14	4	-	0	3	1	Ľ	5	ŝ	5	٢	¥	1
6	2	Ŧ	1		I	15	9	N.	2	C	6	3	1
2	1	14	1	1	\mathbf{R}_{2}	0	C	124	the second	0	2	6	6
5	10	0	5	1	3	1	0		1	1	0	20	0
Z	81	I	0	÷	4	1	11	10	9	1	3	2	e
Q.	5	2	1	0	1	100	C	8			1	0	1

Training Difficulties

Harder optimization problem

- $\cdot \rightarrow$ vanishing gradient problem
- Underfitting
- Saturated units block propagation
- Can be mitigated by pre-training followed by refining
- High variance / low bias situation
 - Many parameters
 - Complex function space
 - Overfitting

Pre-training can be unsupervised!

Feedforward Neural Networks

Training Neural Networks

Deep Neural Networks

Practical Considerations

Further Reading

Practical Considerations

- There many frameworks avaialable that do most of the tedious work for you:
 - Tensorflow/Keras
 - Theano/Keras
 - SciKit Learn
 - PyTorch
 - ...
- With various levels of abstraction
- And programming styles
- Most are GPU enabled
- I prefer PyTorch (for now)

If you want to dive, you need to know python.

Let's look at a simple example!

Feedforward Neural Networks

Training Neural Networks

Deep Neural Networks

Practical Considerations

Further Reading

Further Reading

- A very accessible series of lectures: youtube video series
- Books:

"Introduction to Statistical Learning" "The Elements of Statistical Learning" "Bayesian Reasoning and Machine Learning"

Getting to the bottom of this will take time.