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We can only cover some basics here.
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Artificial Neuron

• Neuron pre-ativation (or input activation)
() = b +
∑

 = b +wTx

• Neuron (output) activation
h(x) = g((x)) = g(b +

∑

)
• w are the connection weights
• b is the neuron bias
• g() is the activation function
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This is the basic building block of all that follows.
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Activation Functions

Linear Function: g() = 

• Range of g same as domain
• Not very interesting

Only linear transformations can be modeled.
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Activation Functions

Sigmoid Function: g() = sigm() = 1
1+exp(−)

• Maps the pre-activation  to [0,1]
• Always positive
• Bounded
• Strictly increasing
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Non-linear models possible.
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Activation Functions

tanh Function: g() = tnh() = exp()−exp(−
exp()+exp(−)

• Maps the pre-activation  to [−1,1]
• Positive and negative
• Bounded
• Strictly increasing

Non-linear models possible.

Foundations of Deep Learning — Liverpool,13.06.2018 6 / 28



Activation Functions

Rectified Linear Function (Unit): g() = reclin() = rel() =mx(0, )

• Bound below by 0
• No upper bound
• Monotonically increasing
• Tends to create “sparse” neurons

A very popular choice.
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Capacity of a Single Neuron

• Can separate two classes. . .
• . . . if separation is linear

(hyperplane)
• Sigmoid activation allows for

probability interpretation
• Cut at 0.5 for classification
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A single neuron can act as a binary classifier.
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Linear Classification Examples

Can be separated by a single neuron.
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Non-Linear Example

Additional neurons can encode the transformation!
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One Hidden Layer

• Hidden layer pre-activation:
(x) = b(1) +W(1)x

• Hidden layer activation:
h(1)(x) = h(1)((x))

• Output Layer:
y(x) = o(b(2) +w(2)Th(1)x)

...
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The function o() is the output layer activation.
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Multiple Classes

• Softmax as output activation:

yj(x) = o()j =
ej
∑K
k=1 e

k

for j = 1, ..., K
• Strictly positive
• Sums to one
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Softmax provides normalized probabilities.
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Empirical Risk Minimization

• Framework to design learning algorithms

rgmin 1
T

∑

t (y(x
(t);θθθ), y(t)) + λΩ(θθθ)

• θθθ is the set of all parameters
• (y(x(t);θθθ), y(t)) is the loss function
• Ω(θθθ) is a regularizer (penalizes certain values of θθθ)
• the loss function is an upper bound on the classification error

Learning is cast as optimization.
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Stochastic Gradient Descent (SDG)

Algorithm for update after each seen example:
• initialize θθθ (all parameters)
• Then, for N iterations (epochs):
• For each training example (x(t),x(t)):
• Δ = −Δθ(ƒ ((t), θ), y(t)) − λΔθΩ(θ)
• θ← θ + αΔ
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Meta parameters likeααα are not optimized!
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Ingredients for SDG

To apply the algorithm wee need:
• The loss function (ƒ ((t), θ), y(t))
• The parameter gradients,
Δθ(ƒ ((t), θ), y(t)) etc.

• The regularizer Ω and its gradiend ΔθΩ
• An initialization method
• A method to compute the gradients in

practice
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Gradient computation is done by back-propagation.
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Regularization

L2 Regularization

Ω(θ) =
∑

k

∑



∑

j(W
(k)
,j )

2

• Only applied to weights, not biases
• Causes weights to decay

Can be interpreted as a Gaussian prior.
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Regularization

L1 Regularization

Ω(θ) =
∑

k

∑



∑

j |W
(k)
,j |

• Only applied to weights, not biases
• Will push some weiths to exactly zero

Can be interpreted as a Laplacian prior.
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Variance vs. Bias

low variance, high bias

ƒ y

good compromise

ƒ y

high variance, low bias

ƒ y

This intuitively motivates regularization.
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Deep Neural Networks

• Instance of multilayer
representation

• Each layer corresponds to
"distributed" representation

• There motivations from biology
(visual cortex)

• Feature extraction
• Grouping of features
• Recognition of classes
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More compact representation that single layer.
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Example: MNIST, Handwritten Digits

Multiple classes. Feature extraction.
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Training Difficulties
Harder optimization problem

• → vanishing gradient problem
• Underfitting
• Saturated units block

propagation
• Can be mitigated by pre-training

followed by refining

High variance / low bias situation

• Many parameters
• Complex function space
• Overfitting
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Pre-training can be unsupervised!
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Practical Considerations

• There many frameworks avaialable that do most of the tedious work for you:
• Tensorflow/Keras
• Theano/Keras
• SciKit Learn
• PyTorch
• . . .

• With various levels of abstraction
• And programming styles
• Most are GPU enabled
• I prefer PyTorch (for now)

If you want to dive, you need to know python.
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Let’s look at a simple example!
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Further Reading

• A very accessible series of lectures:
youtube video series

• Books:
“Introduction to Statistical Learning”
“The Elements of Statistical Learning”
“Bayesian Reasoning and Machine Learning”

Getting to the bottom of this will take time.

Foundations of Deep Learning — Liverpool,13.06.2018 28 / 28

https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH
http://www-bcf.usc.edu/%7Egareth/ISL/
https://web.stanford.edu/~hastie/Papers/ESLII.pdf
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/091117.pdf
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