

Search for the associated production of a Top Quark Pair

Tamara Vázquez Schröder McGill University

Particle Physics Highlight Seminar University of Liverpool - 02/05/18

> Run: 300571 Event: 90599753 2016-05-31 12:0

& Higgs Boson

Outline

* The Standard Model

***** The Giant: ATLAS

***** The Heaviest: Top quark

***** The Elusive: Higgs boson

* Top & H: tt̄H production

- H→bb
- H→WW, ZZ, TT
- Н→үү

*****Conclusions

The Standard Model of Particle Physics

The SM provides unified picture of the electroweak (EW) and strong interactions

<u>building blocks of matter</u>: **fermions** (leptons and quarks) <u>force carriers</u>: **bosons** (gluon, photon, W+-, Z)

The Standard Model of Particle Physics

The SM provides unified picture of the electroweak (EW) and strong interactions

building blocks of matter: **fermions** (leptons and quarks)

force carriers: **bosons** (gluon, photon, W+-, Z)

Higgs field: added to the SM to generate the mass of EW bosons and fermions

The Top Quark:

heaviest elementary particle in the SM: Yukawa coupling ≈ 1 decays before it can hadronise: study properties of a **'bare' quark**

The Top Quark: > 20 Years Celebration!

Discovered in 1995 by the CDF and D0 experiments (Tevatron), completing the list of 6 fermions

The famous Event #417: tī Candidate (1993) -D0 experiment

Last year we were celebrating 20 years since the birth of the heaviest fundamental particle... and still a hot topic in particle physics!

March 2, 1995: Joint CDF/DØ seminar announcing the top quark discovery

The Large Hadron Collider (LHC)

The CERN accelerator complex & the collider

The ATLAS experiment

The ATLAS experiment

Multipurpose detector:

tracking detector + calorimeter + muon spectrometer

In Run2: new Insertable B-Layer (IBL) improved b-tagging performance!

- needed to shrink the diameter of the beam pipe and insert it into the gap between the Pixel Detector and the pipe

faster read-out chips and new silicon sensor technologies
 developed to cope with higher
 radiation and high particle
 occupancy

Particle identification

ATLAS Experiment © 2014 CERN

http://www.atlas.ch/multimedia/#how-atlas-detects-particles

* <u>Main production mode</u>: **top quark pair** via the strong interaction

* <u>Smaller branching ratio</u>: produced as **single top quark** via EW

Decays into lighter particles via the EW interaction

- Almost exclusively as t \rightarrow Wb
- W-boson decay modes: (**leptonic** or **hadronic**)

Z-boson decays for comparison

Experimental signatures

The Higgs Mechanism

- The Higgs field couples to particles giving them mass
- The stronger the coupling, the heavier the particle (Yukawa coupling)

- In electroweak theory, W and Z Boson should not have mass - however we know they do!
- The Higgs Mechanism, explains the mass of the W and Z Boson, as well as the fermions, and the additional observation of a spin-0 boson

http://www.phdcomics.com/comics.php?f=1489

4th July 2012: Higgsdependence day!

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

4th July 2012: Higgsdependence day!

Since its discovery in 2012, focus on **precision measurements of production and decay** of the Higgs boson, and the **search for additional BSM Higgs bosons**

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

Higgs production modes

- Gluon fusion has the largest production rate, order of magnitude higher than VBF or VH
 Large cross section increase from 8 to 13 TeV
- Large cross section increase from 8 to 13 TeV, especially for ttH and tH

 \Rightarrow At m_H = 125 GeV, Higgs decays to **b** $\bar{\mathbf{b}}$ is the most dominant (~ 57 %) Branching Ratio LHC HIGGS XS WG 2016 ***** The second largest decay bb mechanism is $H \rightarrow WW (\sim 22 \%)$ WW \Rightarrow Though bb decays are the most gg 10⁻¹ dominant, they are very **difficult to** reconstruct ττ * Also have broad mass resolution С<u>С</u> (contrary to $\gamma\gamma$ and $ZZ(\rightarrow 4\ell)$) ZZ 10⁻² γγ observed decay modes (31%) 10⁻³ Zγ ΖZ μμ cc(*) 'difficult' modes μμ 10⁻⁴ 120 **{cc, gg**, μμ**}** bb 122 123 124 125 126 127 121 128 129 130 (11%) M_н [GeV] → long term evidence (58%)

Evolution of the signal from both 7 and 8 TeV data

Higgs decay to $ZZ \rightarrow 4\ell$ (Golden Channel)

Higgs decay to $\gamma\gamma$

Top Yukawa coupling... why should we care?

Top quark is the heaviest fermion in the SM → Largest Yukawa coupling * The only fermion with such a natural coupling

- Does this point to a special role in electroweak symmetry breaking or beyond the SM physics?
- * Top quark Yukawa coupling tells us about the stability of Universe and the required energy scale for new physics

Tamara Vázquez Schröder (McGill University)

Top & Higgs

indirect top Yukawa coupling constraints from gluon fusion production and $\gamma\gamma$ decay...

... assuming no additional heavy particles which could couple to the Higgs boson!

direct top Yukawa coupling measurement only possible at the LHC via ttH and tH

Similar signature is visible in SUSY searches, VLQ, black holes or heavy charged Higgs If such new physics scenarios exist, will see significant deviations from SM prediction

***** ttH production (~500 fb @ 13TeV) is:

- two orders of magnitude smaller than ggF Higgs production
- three orders of magnitude smaller than tī production

* Look for ttH in final states with distinctive signatures and features

• Combination of top quark x Higgs boson decay modes

Top Pair Branching Fractions

ttH analysis channels

tīH interest: from Run-1 to Run-2

JHEP08(2016)045

Run-1 ATLAS+CMS Higgs combination:
 tt

 tt
 H significance of 4.4 σ (2.0 σ expected)

 Excess in both ATLAS and CMS μ_{ttH} = σ/σ_{SM}
 Originating from tt
 H multilepton analyses

Big leap (x4) for ttH SM cross section from 8 to 13 TeV (*) and high statistics of top quark samples collected by the LHC make this SM search extremely interesting to be studied in Run-2!

(*) Other background contributions cross section do not increase as much, but different kinematics at higher energies!

Most recent ttH results

	2015+2016 data [~36 fb ⁻¹]	ATLAS EXPERIMENT	COMPact Muon Solenoid				
	ttH multilepton (H→WW/ττ/ZZ)	ArXiv: <u>1712.08891</u> submitted to PRD (including combination)	CMS-HIG-17-018 µttн = 1.23 ^{+0.45} -0.43				
	ttH(bb)	arXiv: <u>1712.08895</u> submitted to PRD (leptonic)	CMS-HIG-17-026 (leptonic) $\mu_{ttH} = 0.72 \pm 0.45$ CMS-HIG-17-022 (all-hadronic) $\mu_{ttH} = 0.9 \pm 1.5$				
	ttH(ZZ→4ℓ)	arXiv:1712.02304 submitted to JHEP µttн < 7.1	<mark>arXiv:1706.09936</mark> µ _{ttH} < 1.18				
	ttH(yy)	ATLAS-CONF-2017-045 1.0σ (exp: 1.8σ) μ _{ttH} = 0.5 ±0.6	CMS-PAS-HIG-16-040 3.3σ (exp: 1.5σ) μ _{ttH} = 2.2 ^{+0.9} _{-0.8}				
	ATLAS+CMS Run1 combination	JHEP 1608 (2016) 045 4.4σ (exp: 2.0σ) μ _{ttH} = 2.3 ^{+0.7} _{-0.6}					
1							

ttH (multileptons): analysis strategy

Target: ttH with

- $H \rightarrow WW/ZZ/TT \rightarrow \geq 1\ell$
- $t\bar{t} \rightarrow (\ell + jets, dilepton)$

High multiplicity final state **Rare in SM:** same-sign 2ℓ , 3ℓ , 4ℓ

• Exploit presence of hadronically decaying T

* Split in categories based on **number of e/μ** and **number of τ**

- Loose lepton definition (no isolation, loose ID)
- Dilepton and single lepton triggers

Tamara Vázquez Schröder (McGill University)

arXiv:1712.08891 submitted to PRD

tīH (multileptons): tight lepton definition

* Common main/important background: non-prompt leptons from semileptonic b-decay

- *** New MVA lepton isolation (PromptLeptonIso=PLI)** to reject non-prompt *l* based on:
 - lepton and overlapping **track jets** properties
 - lepton track/calorimeter **isolation** variables

- SF values ~ 0.90 0.98
- SF systematic uncertainties small (max ~3% @ low pT), w/ negligible impact in the analysis
- Factor O(20) rejection for leptons originating from b-hadrons

New MVA cut to reduce QMIsID for 2*t*SS and 3*t*+0⁺

• Factor $\mathcal{O}(17)$ background rejection for a 95% signal efficiency

tīH (multileptons): object definition summary

Several "Loose" and "Tight" lepton definitions to optimise the event selection in each multilepton channel

			e					μ \square
	L	L^{\dagger}	L^*	Т	T^*	L	Γ^{\dagger}	$L^*/T/T^*$
Isolation	No		Y	es		No		Yes
Non-prompt lepton BDT	N	0		Yes		N	0	Yes
Identification]	Loose	è	T	ight		Lo	oose
Charge misassignment veto BDT		Ν	0		Yes		I	No
Transverse impact parameter significance, $ d_0 /\sigma_{d_0}$			< 5				<	< 3
Longitudinal impact parameter, $ z_0 \sin \theta $				<	< 0.5 r	nm		

L = Loose L⁺ = + Loose isolated L^{*} = + PLI isolated T = Tight (PLI isolated) T* = + QMisID MVA veto (el only) Thad

Medium BDT ID to reject jets (1M, 1T in 1ℓ+2⊤)

 $p_T > 25 \text{ GeV}$

BDT to reject el faking т

т-µ overlap removal

b-jet veto

 τ_{had} vertex is PV

Jets $p_T>25~GeV$

BJets MV2c10 70% WP

A Minimum jet requirements: $N_{jets} ≥ 2$; $N_{b-jets} ≥ 1$

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS+1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell + 1\tau_{had}$
Light lepton	2T*	$1L^*, 2T^*$	2L, 2T	$1\mathrm{T}$	$2T^*$	$2\mathrm{L}^{\dagger}$	$1L^{\dagger}, 2T$
$ au_{ m had}$	0M	0M	—	1T, 1M	$1\mathrm{M}$	$1\mathrm{M}$	$1\mathrm{M}$
$N_{\rm jets}, N_{b-{\rm jets}}$	$\geq 4, = 1, 2$	$\geq 2, \geq 1$	$\geq 2, \geq 1$	$\geq 3, \geq 1$	$\geq 4, \geq 1$	$\geq 3, \geq 1$	$\geq 2, \geq 1$

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

- *** Signal extraction**: fit or cut on **BDTs (boosted decision tree)** to discriminate signal against the main background processes [except in $3\ell+1\tau$]
- *** Pre-MVA region**: loose selection per channel to train MVA
 - Input variables: system reconstruction, pseudo-continuous b-tagging, kinematics [full list in back-up]
- *** Final selection** per channel:
 - Either pre-MVA selection (e.g. 2ℓ SS+0 τ), tighter selection (e.g. 2ℓ SS+1 τ), or split pre-MVA region in categories (e.g. 3ℓ +0 τ)
 - 2ℓSSOT: combination of two BDTs (tīH vs. tī; tīH vs. tīV)
 - 3²0T: 5-dimensional multinominal BDTs mapped to 5 categories (tt̄H, tt̄W, tt̄Z, tt̄, VV)
 - 4ℓ (Z-enriched): tīH vs. tīZ
 - 2*ℓ*SS+1т, 2*ℓ*OS+1т, 1*ℓ*+2т: tīH vs. tī (with fake т)

	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS + 1\tau_{had}$	$2\ell OS + 1\tau_{had}$	$3\ell{+}1 au_{ m had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	$tar{t}Z$ / -	$t \overline{t}$	all	$tar{t}$	_
Discriminant	$2 \times 1D BDT$	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1 / 1	2	2	10	1
Control regions	-	4	-	-	-	-	-

tīH (multileptons): background composition

* Non-prompt lepton in tī

- semileptonic b-decay
- y conversions

*** Fake T** from light/b-jets

DATA-DRIVEN (DD): MATRIX METHOD (MM), FAKE FACTOR (FF)

FF ~ matrix method except prompt background is taken from MC

* Misidentified charge lepton

- e.g. trident electrons (Bremsstrahlung)
- using **3D likelihood method** [pT, η, Tight/Loose]

DATA-DRIVEN (DD): LIKELIHOOD FIT

Irreducible backgrounds with prompt-leptons (tīZ, tīW, ₩V)

MC (cross check: fit to data)

"Other": 4tops, tīWW, tH, tZ

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

tīH (multileptons): non-prompt light *l*

Method [parametr.]		2 ℓSS+0т		3ℓ+0т	4 ℓ	2ℓSS+1⊤	Other т channels
Non- prompt lepton		DD (I el: [p _{Τ,} μ: [p _Τ , q	MM) NBjets] dR(μ,j)]		pseudo- DD (Fake SF)	DD (FF) el/µ: [p⊤]	MC (very small)
DD/MC	ee: 2.0±0.5	eμ: 1.7±0.4	μμ: 1.5 ±0.5	SR: 1.8 ± 0.8			
Semileptonic b-decay		Photon conversions		Non-pı 8	rompt lepto λ fake τ	n	

strongly reduced with PLI

70% from tī in 2ℓSS+1τ

tīH (multileptons): fake tau

Estimate method [parametrisation]	1 ℓ+2т	2ℓOS+1τ	2ℓSS+1τ	3ℓ+1т
Fake tau	DD (SS data)	DD (FF) [p _T]	pseudo-DD (MC 2ℓOS+1	Correction with т DD SF)

☆ 1ℓ+2T: mostly tī with 1 or 2 fake ⊤

*** 2***l***OS+1T:** fake factor

- Mainly $t\bar{t}$ with jet faking τ
- \bullet Fake rates parametrised in τ pT

- Harmonised 1-fake-⊤ estimate for all channels, profit from large statistics from 2ℓOS+1⊤
- Final SF = 1.36 ± 0.16

***** Overall **reasonable data/prediction agreement** with estimates fakes in VRs

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

tterfl (multileptons): prompt *l* background validation

- * Largest irreducible backgrounds: tīW, tīZ, diboson
- ***** Estimated using **NLO MC samples**, with theory/modelling uncertainties:
 - **Cross-section uncertainties**
 - Scale variations
 - Generator comparisons
- \Rightarrow Validated in several regions, eg: 3 ℓ ttW/Z CRs built using the multinomial BDT

* Overall good data/prediction agreement in ttV-enriched CRs using MC simulation

• Also good agreement in cut-based VRs

tīH (multileptons): profile likelihood fit

Sinned profile likelihood fit $L(\mu,\theta) = L_{Pois}(\mu,\theta) \cdot \prod_{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta_p^2}{2}\right)$

*** Parameter of interest**: signal strength

 $\mu_{t\bar{t}H} = \frac{\sigma_{t\bar{t}H}}{\sigma_{t\bar{t}H}^{SM}}$

*** Systematic uncertainties** included in the fit as <u>nuisance parameters θ </u>

• Need sufficiently flexible model of signal and background!

Constrain uncertainty in <u>control region</u>, propagate this knowledge to <u>signal region</u>

- ***** Find best values for μ and θ from minimising the -log L
- * Calculate experimental sensitivity in terms of the significance
 - Quantify level of disagreement between data and background-only hypothesis as Gaussian standard deviations (σ)

Systematic uncertainty	Type	Components
Luminosity	Ν	1
Pileup reweighting	SN	1
Physics Objects		
Electron	SN	6
Muon	SN	15
$ au_{ m had}$	SN	10
Jet energy scale and resolution	SN	28
Jet vertex fraction	SN	1
Jet flavor tagging	SN	126
$E_{\mathrm{T}}^{\mathrm{miss}}$	SN	3
Total (Experimental)	—	191
Data-driven non-prompt/fake leptons and charge misassignment		
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	Ν	5
γ -conversion fraction	Ν	5
Fake $\tau_{\rm had}$ estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)	_	83
$t\bar{t}H$ modeling		
Cross section	Ν	2
Renormalization and factorization scales	\mathbf{S}	3
Parton shower and hadronization model	SN	1
Higgs boson branching fraction	Ν	4
Shower tune	SN	1
$t\bar{t}W$ modeling		
Cross section	Ν	2
Renormalization and factorization scales	\mathbf{S}	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
$t\bar{t}Z$ modeling		
Cross section	Ν	2
Renormalization and factorization scales	\mathbf{S}	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
Other background modeling		
Cross section	Ν	15
Shower tune	SN	1
Total (Signal and background modeling)	_	41
Total (Overall)	_	315

*** Instrumental/detector** uncertainties

- correlated across channels
 - Exception: JES Flavour Composition

*** DD fake estimate** uncertainties

***** Prompt background modelling

uncertainties correlated across channels

One parameter of interest: μ(t̄tH) 315 nuisance parameters

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

tīH (multileptons): pre-fit summary

*** Most statistically sensitive** to $t\bar{t}H: 2\ell SS+0\tau$ and $3\ell+0\tau$

Purest but lowest statistics: 4*t*

Largest pre-fit excess per fit category: 2*l*SS+1_T

ttH (multileptons): post-fit SRs

35⊢

25

20

15

10

1.25

0.75

0.5

0

ATLAS

Post-Fit

³⁰ → 3ℓ SR

√s = 13 TeV, 36.1 fb⁻

Events / bir

Data / Pred.

3ℓ**+1**⊤

4 ℓ (Z-depleted)

Data

Other

,∎tīZ

2**ℓ0S+1**⊤

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3**ℓ+0**⊤

Data

tt W

Other

Diboson

--- Pre-Fit Bkgd

ttH

tī Z

Non-prompt

Uncertainty

2ℓSS+0τ

• Data

Diboson

a mis-id

ttH

ttZ

Other

Uncertainty --- Pre-Fit Bkgd.

Non-prompt

Events / bin

Events / bir

Data / Pred.

10⁴

 10^{3}

ATLAS

2ℓSS

Post-Fit

 $\sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1} t\bar{t}W$

1*ℓ***+2**τ

Events

2.5

1.5

0 5

6

Data / Pred.

ATLAS

Post-Fit

√s = 13 TeV, 36.1 fb⁻

4*t* Z-depleted

Tamara Vázquez Schröder (McGill University)

arXiv:1712.08891 submitted to PRD

tīH (multileptons): fit results (II)

	ATLAS			√s=	√s=13 TeV, 36.1 fb ⁻¹			
	— Tot.	···· St	at.	То	ot.	(Stat.,	Syst.)	
$2\ell OS + 1\tau_{had}$.	•		1.7	+2.1 –1.9	$(^{+1.6}_{-1.5},$	+1.4)	
$1\ell + 2\tau_{had}$	┝━┝╍┣┙			-0.6	+1.6 –1.5	$(^{+1.1}_{-0.8},$	+1.1 -1.3	
4 <i>ℓ</i>	⊦ •			-0.5	+1.3 -0.9	$(^{+1.3}_{-0.8},$	+0.2 -0.3	
$3\ell + 1\tau_{had}$	• ••	•	•	1.6	+1.8 –1.3	$(^{+1.7}_{-1.3},$	+0.6 -0.2)	
$2\ell SS + 1\tau_{had}$			•	H 3.5	+1.7 -1.3	$(^{+1.5}_{-1.2},$	+0.9 -0.5)	
3ℓ		₩ ● •		1.8	+0.9 -0.7	$(^{+0.6}_{-0.6},$	+0.6 -0.5)	
2ℓSS		I ● H		1.5	+0.7 -0.6	$(^{+0.4}_{-0.4},$	+0.5 -0.4)	
combined		I I I		1.6	+0.5 -0,4	$\binom{+0.3}{-0.3}$,	+0.4 -0.3)	
	-2 0	2	4	6	8	10	12	
			E	Best-fit µ	, fo	or m _H =12	25 GeV	

Channel	Significance				
	Observed	Expected			
$2\ell OS+1\tau_{had}$	0.9σ	0.5σ			
1ℓ + $2\tau_{had}$	-	0.6σ			
4ℓ (*)	-	0.8σ			
$3\ell + 1\tau_{had}$	1.3σ	0.9σ			
$2\ell SS+1\tau_{had}$	3.4σ	1.1σ			
3ℓ	2.4σ	1.5σ			
2ℓSS	2.7σ	1.9σ			
Combined	4.1 <i>o</i>	2.8σ			

* Cross-section extrapolated to the inclusive phase space:

• σ(ttH)=790 ±150 (stat.) ⁺¹⁷⁰ ₋₁₅₀ (syst.) fb

***** Significance with respect to background-only hypothesis = **4.1** σ (**2.8** σ) obs (exp)

 \Rightarrow Compatible with SM (within 1.4 σ)

Compatibility (7 chan.) = 34%

* Alternative fit: tt̄Z and tt̄W normalisation free-floating

- 15% loss in sensitivity: $\mu(t\bar{t}H) = 1.57 + 0.57 0.50$
- $\mu(t\bar{t}Z/W)$ in agreement with SM: $\mu_{t\bar{t}W} = 0.92 \pm 0.32$; $\mu_{t\bar{t}Z} = 1.17 + 0.25 0.22$

(*) for m(4ℓ) != Higgs mass window

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

***** Largest (grouped) impact on µ(tt̄H):

 \bullet signal modelling, JES and JER, and the non-prompt light ℓ estimates

*** No major constraints or pulls** of nuisance parameters

			Pre-fit impact on μ: $\theta = \hat{\theta} + \Delta \theta$ $\theta = \hat{\theta} - \Delta \theta$	Δμ -0.15 -0.1 -0.05 0 0.05 0.1 0.15
			Post-fit impact on µ:	
Uncertainty Source	Δ	μ	$\theta = \theta + \Delta \theta$ $\theta = \theta - \Delta \theta$	$\sqrt{2} = 12 \text{ To} / 26.1 \text{ fb}^{-1}$
$t\bar{t}H$ modeling (cross section)	+0.20	-0.09	→ Nuis. Param. Pull	15 = 13 TeV, 30.1 ID
Jet energy scale and resolution	+0.18	-0.15	ttH cross section (scale variations)	•
Non-prompt light-lepton estimates	+0.15	-0.13	Jet energy scale (pileup subtraction)	• • • • • • • • • • • • • • • • • • •
Jet flavor tagging and τ_{had} identification	+0.11	-0.09	Luminosity	
$t\bar{t}W \mod$	+0.10	-0.09	Jet energy scale (flavor comp. 2 <i>ℓ</i> SS)	
$t\bar{t}Z$ modeling	+0.08	-0.07	Jet energy scale variation 1	
Other background modeling	+0.08	-0.07	ttw cross section (scale variations)	
Luminosity	+0.08	-0.06	$\tau_{\rm rest}$ identification	
$t\bar{t}H$ modeling (acceptance)	+0.08	-0.04	ttH cross section (PDF)	
Fake $\tau_{\rm had}$ estimates	+0.07	-0.07	ttH modeling (shower tune)	
Other experimental uncertainties	+0.05	-0.04	Flavor tagging c-jet/ $ au_{ m had}$	
Simulation sample size	+0.04	-0.04	$tt\ell\ell$ cross section	•
Charge misassignment	+0.01	-0.01	3ℓ Non-prompt closure	
Total systematic uncertainty	+0.39	-0.30	ttW modeling (generator)	
<u> </u>	·		Non-prompt stat. in 4th bin of 3ℓ SR	
			-	-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
				$(\hat{\theta} - \theta_{o})/\Delta \Theta$

tīH(bb): analysis strategy

★ Biggest challenge: good modelling of the tt+HF (≥1b, ≥1c) background

- Nominal sample: 5-flavour scheme
- Relative contribution of tī+≥1b subcomponents reweighted to tī+bb predictions by Sherpa+OpenLoops (4-flavour scheme)

*** Channel categorisation** based on

- Number of ℓ (1 or 2 opposite-sign)
- Number of jets
- Requirements on the b-tagging discriminant (4 calibrated working points)
- Resolved or boosted, for single lepton channel

MVA analysis needed to discriminate signal from the overwhelming background

 The 'classification BDT' includes as input variables: kinematic variables, reconstruction BDTs (resolved), likelihood and matrix element method discriminants (where available), discrete btagging discriminant

Tamara Vázquez Schröder (McGill University)

arXiv:1712.08895 submitted to PRD

ttH(bb): results

* Normalisation factors for $t\bar{t}+\geq 1b$ and $t\bar{t}+\geq 1c$ left free-floating in the fit:

- NF(tī+≥1b) = 1.24 ± 0.10
- NF(tī+≥1c) = 1.63 ± 0.23

* Most relevant uncertainties related to $t\bar{t}+\geq 1b$ background modelling

* Analysis is **dominated by systematic** uncertainties

***** Significance w.r.t background-only hypothesis: **1.4σ (1.6σ) obs (exp)**

tter title to the termination to the termination of terminatio of termination of termination of term

Channel	Significance				
	Observed	Expected			
Multilepton	4.1σ	2.8σ			
$H \rightarrow b \bar{b}$	1.4σ	1.6σ			
$H ightarrow \gamma \gamma$	0.9σ	1.7σ			
$H \rightarrow 4\ell$		0.6σ			
Combined	4.2σ	3.8 <i>o</i>			

Bonus: measure μ_{ttH} for different decay modes

≭ Combination of multilepton, bb̄, үү, and ZZ→4ℓ ^{вда} tīH analyses

* Results in agreement with the SM predictions

- σ(ttH) =590 ⁺¹⁶⁰ -150 fb
- σ_{SM}(ttH) =507 +35 -50 fb

*****Significance w.r.t background-only hypothesis:

4.2σ (3.8σ) obs (exp)

• Evidence for tte production!

Tamara Vázquez Schröder (McGill University) arXiv:1712.08891 submitted to PRD

Comparison with CMS (I)

ATLAS EXPERIMENT

- * CMS claimed observation of ttH combining Run1+Run2 [2015+2016 dataset]
 - Significance = 5.2 (**4.2**) σ observed (expected)
- * How different are the sensitivities?

Parameter	Best fit	Stat
$\mu_{t\bar{t}H}^{WW^*}$	$1.97^{+0.71}_{-0.64} \\ \left(\begin{smallmatrix} +0.57 \\ -0.54 \end{smallmatrix} \right)$	$^{+0.42}_{-0.41} \\ \left(^{+0.39}_{-0.38} \right)$
$\mu_{t\bar{t}H}^{ZZ^*}$	$\begin{array}{c} 0.00^{+1.30}_{-0.00} \\ \left(\substack{+2.89 \\ -0.99} \right) \end{array}$	$^{+1.28}_{-0.00} \\ \left(^{+2.82}_{-0.99} \right)$
$\mu_{t\bar{t}H}^{\gamma\gamma}$	$2.27^{+0.86}_{-0.74} \\ \left(\begin{smallmatrix} +0.73 \\ -0.64 \end{smallmatrix} \right)$	$^{+0.80}_{-0.72} \\ \left(^{+0.71}_{-0.64} \right)$
$\mu_{t\bar{t} ext{H}}^{ au^+ au^-}$	$\begin{array}{c} 0.28^{+1.09}_{-0.96} \\ \left(\substack{+1.00 \\ -0.89} \right) \end{array}$	$ \begin{array}{c} +0.86 \\ -0.77 \\ \left(+0.83 \\ -0.76 \right) \end{array} $
$\mu^{b\overline{b}}_{t\overline{t}H}$	$\begin{array}{c} 0.82\substack{+0.44\\-0.42} \\ \left(\substack{+0.44\\-0.42}\right) \end{array}$	$^{+0.23}_{-0.23} \\ \left({}^{+0.23}_{-0.22} \right)$
$\mu_{t\bar{t}H}^{7+8{ m TeV}}$	$2.59^{+1.01}_{-0.88} \\ \left(\begin{smallmatrix} +0.87 \\ -0.79 \end{smallmatrix} \right)$	$^{+0.54}_{-0.53}$ $\begin{pmatrix} +0.51\\ -0.49 \end{pmatrix}$
$\mu_{t\bar{t}H}^{13{ m TeV}}$	$1.14^{+0.31}_{-0.27} \\ \begin{pmatrix} +0.29 \\ -0.26 \end{pmatrix}$	$ \begin{array}{c} +0.17 \\ -0.16 \\ \left(\begin{array}{c} +0.16 \\ -0.16 \end{array} \right) \end{array} $
$\mu_{t\bar{t}H}$	$1.26^{+0.31}_{-0.26} \\ \left(\begin{smallmatrix} +0.28 \\ -0.25 \end{smallmatrix} \right)$	$^{+0.16}_{\begin{array}{c}-0.16\\ \left(+0.15\\ -0.15\right)\end{array}}$

* All channels comparable

• Except tīH (H→bb), CMS ~33% smaller uncertainty!

Comparison with CMS (II)

Stat-only CMS uncertainty slightly better: use full b-tagging discriminant shape, deep neural networks in single *l* channel

*** Largest** difference coming from **systematic** uncertainties:

Modelling uncertainties on tī+≥1b from comparison of different generators, parton showers, … **largest impact** on uncertainty on signal strength and **only present in ATLAS**!

CMS **only** includes renormalisation/ factorisation scale and PDF variations **shape** uncertainties for tt

Open questions to CMS...

- Which systematic increase (decrease) the tt̄+≥1c/b (tt̄+light) yields?
- What are the pulls that decrease tt+light?
- Are $t\bar{t}+\geq 1c/b$ yields used to correct the shapes?

Conclusions

* New results presented for ttH production search in ATLAS with 36.1 fb⁻¹

- * Challenging and complex final states
 - Sensitivity driven by usage of multivariate analysis techniques and precise background modelling
- ***** Four channels are better than one!
 - Evidence for ttH production when combining all available channels
 - 4.2σ (3.8σ) obs (exp) significance
 - Results consistent with the SM predictions
 - $\sigma(ttH) = 590 + 160_{-150} \text{ fb}$

```
\sigma_{SM}(ttH) = 507 + 35_{-50} fb
```

* 2017 pp collisions data on tape: more than what has been analysed so far!

• Stay tuned for updated results!

Back-up slides

Detector performance (I)

***** Excellent performance of LHC and ATLAS in Run 2 so far:

- Record instantaneous luminosity for pp interactions in 2017: 2.06x10³⁴ cm⁻²s⁻¹
 - **double** the LHC design!
- 80 fb⁻¹ good for physics from 87 fb⁻¹ recorded by ATLAS

*** Improved b-tagging** performance with the inclusion of IBL (Insertable B-Layer) for Run 2

60

50

40

30

20

ATLAS Online Luminosity

2011 pp 🛛 🛛 🛛 🛛 🗸 🗸 🗸 🗸 🗸

2012 pp

2015 pp

2016 pp

2017 pp

√s = 8 TeV

√s = 13 TeV

√s = 13 TeV

√s = 13 TeV

Delivered Luminosity [fb⁻¹]

Detector performance (II)

*** Biggest challenge**: robustness against pile-up

- Controlling trigger rates at high interaction per bunch crossing
- Online and offline reconstruction performance maintained even at the highest pile-up

improved HLT algorithms to suppress dependence of E_T^{miss} trigger rates on pile-up

Recorded Luminosity [pb⁻¹/0.1]

350⊢

300⊟

250

200

150

100

50

ATLAS Online, 13 TeV

designed for 23

30

20

10

Ldt=86.5 fb

2015: <µ> = 13.4

2016: <µ> = 25.1

2017: <u> = 38.1

Total: $<\mu> = 32.0$

often ~ 60

60

70

80

50

Mean Number of Interactions per Crossing

40

* Several categories optimised for ttH, tHqb and tHW, with $0 \ge 1\ell$ from tt decays

***** Leptonic channel:

- One category for ttH
- Two categories for tH (with/without forward jets)

***** Hadronic channel:

- ≥3 jets, ≥1 b-tagged jets: BDT to identify ttH against ggH and multijet background
- 4 central jets, 1/≥2 b-tagged jets

t**t**H(H→ZZ→4ℓ) resonant

Beconstructed Event Category $1j \cdot p_T^{4l}$ -Low $1j \cdot p_T^{4l}$ -Med $1j \cdot p_T^{4l}$ -Med $1j \cdot p_T^{4l}$ -High VBF-enriched- p_T^j -Low VBF-enriched- p_T^j -High VBF-p¹_-Low ggF-0*j* **ATLAS** Simulation VBF-p_-'High $ggF-1i - p_{-}^{H}-Low$ VH-Had * Higgs boson candidates with $H \rightarrow ZZ^* \rightarrow 4I$ ggF-1*j*-p_H-Med VH-Lep ggF-1*j*-p_+^H-High 13 TeV, 36.1 fb⁻¹ ttH $118 < m(4\ell) < 129 \text{ GeV}$ ggF-2j bbH ***** ttH enriched category: • ≥1 b-tagged jet • \geq 4 jets or 1 ℓ + \geq 2 jets \Rightarrow No events observed \rightarrow Upper VH-Had-enriched limits on ttH VH-Lep-enriched ttH-enriched 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0 0.7

Expected Composition

Reconstructed	Signal	ZZ^*	Other	Total	Observed
event category		background	backgrounds	expected	
0j	26.8 ± 2.5	13.7 ± 1.0	2.23 ± 0.31	42.7 ± 2.7	49
$1j$ - $p_{\rm T}^{4\ell}$ -Low	8.8 ± 1.1	3.1 ± 0.4	0.53 ± 0.07	12.5 ± 1.2	12
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -Med	5.4 ± 0.7	0.88 ± 0.12	0.38 ± 0.05	6.7 ± 0.7	9
$1j$ - $p_{\mathrm{T}}^{4\ell}$ -High	1.47 ± 0.24	0.139 ± 0.022	0.045 ± 0.007	1.65 ± 0.24	3
$\text{VBF-enriched-}p_{\text{T}}^{j}\text{-}\text{Low}$	6.3 ± 0.8	1.08 ± 0.32	0.40 ± 0.04	7.7 ± 0.9	16
$\text{VBF-enriched-}p_{\text{T}}^{j}\text{-}\text{High}$	0.58 ± 0.10	0.093 ± 0.032	0.054 ± 0.006	0.72 ± 0.10	3
VH -Had-enriched- $p_{\rm T}^{4\ell}$ -Low	2.9 ± 0.5	0.63 ± 0.16	0.169 ± 0.021	3.7 ± 0.5	3
VH -Had-enriched- $p_{\rm T}^{4\ell}$ -High	0.64 ± 0.09	0.029 ± 0.008	0.0182 ± 0.0022	0.69 ± 0.09	0
VH-Lep-enriched	0.318 ± 0.019	0.049 ± 0.008	0.0137 ± 0.0019	0.380 ± 0.020	0
ttH-enriched	0.39 ± 0.04	0.014 ± 0.006	0.07 ± 0.04	0.47 ± 0.05	0
Total	54 ± 4	19.7 ± 1.5	3.9 ± 0.5	77 ± 4	95

tīH (multileptons): non-prompt light ℓ (II)

2*l***SS/3***l***+OT:** Matrix Method

events in pre-MVA signal region with SS **loose** leptons (in 3*t*, lep_0 (OS to SS pair) is prompt in 98% of the times)

$$N_{TT}^{f} = w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT} + w_{TT}N^{TT}$$

f(ε_r, ε_f) via tag&probe method in tī events

Channel	Region	Selection criteria
2ℓSS		$2 \le N_{\text{jets}} \le 3 \text{ and } N_{b-\text{jets}} \ge 1$
(3ℓ)		One tight, one loose light lepton with $p_{\rm T} > 20$ (15) GeV
		Zero τ_{had} candidates
	ϵ_{real}	Opposite charge, opposite flavour
	ϵ_{fake}	Same charge and $e\mu$ or $\mu\mu$

- electrons ε_f: 2D (Nb-tags, p_T) parametrisation

 more conversions in 2bj than 1bj
 muons ε_f: 2D (minΔR(μ,j), p_T) parametrisation
 - Fakes composition in the CR is ~ representative of the fakes in pre-MVA SR

*** 4** ℓ : correct MC with **3 fake factors** ($\lambda^{el}_{heavy}, \lambda^{el}_{light}, \lambda^{\mu}_{all}$) derived from fit to data in 4 CRs *** 2** ℓ **SS+1T**: fake factor [pT], estimates the fakes originating from tt

≭ 2ℓOS+1	r: fake	factor			nJets	nBJets	Z cut	Used for
FF method	Т	anti-т	А, В	2LOS+tau selection	≥ 3	≥ 1	M _{ee/μμ} - M _Z I > 10 GeV	to be estimated
apply in B.	Λ	B		ZVeto 3j0b	≥3	0	$ M_{ee/\mu\mu} - M_Z > 10 \text{ GeV}$	nominal FF
			C, D	OnZ 3j0b	≥3	0	$ M_{ee/\mu\mu}$ - $M_Z l < 10 \text{ GeV}$	systematics (Z+jets enriched)
extract FF:				exc2j1b	2	≥ 1	$ M_{ee/\mu\mu}$ - $M_Z l > 10 \text{ GeV}$	systematics (ttbar enriched)

- т/anti-т definition based on BDT score of jet-vs-т
- Reasonable agreement of yield and shape of DD estimate with data

222S+1T and **3***l***+1T**: MC correction with SF derived from {DD(2*l***OS+1T) / MC**}

- Harmonised 1-fake- τ estimate for all channels, profit from large statistics from 2ℓ OS+1 τ , composition uncertainties to cover wide range of b-faking- τ content
- Final SF = 1.36 ± 0.16

Fakes/Non-prompt *l*: uncertainties

Systematic uncertainty	Values	Туре	Comp
Data-driven fake leptons and electron charge mis-assignment			
Control region statistics		SN	21
Real lepton efficiencies		SN	1
Fake lepton rate		SN	6 (μ), 2 (e), 3 (bkg sub.)
Non-promt lepton estimate: non-closure	Tab. 15	Ν	4
γ -conversion fraction	Tab. 14	Ν	4
Electron charge mis-assignment		SN	1
41 fake lepton rate		SN	1
TOTAL (Data driven reducible background		_	43

Correlation across channels:

- \bigcirc Correlated between 2 ℓ SS+0 τ and 3 ℓ +0 τ
 - Correlated between 2ℓ SS+1T and 3ℓ +1T

Correlated between 2ℓSS+1⊤, 3ℓ+1⊤, and 2ℓOS+1⊤

Systematic uncertainty	Туре	Comp
Data-driven fake taus		
$1\ell + 2\tau_{had}$ SS data: CR statistics	SN	2
$1\ell + 2\tau_{had}$ SS data: non-closure	Ν	1
$1\ell + 2\tau_{had}$ SS data: shape	S	1
$2\ell OS + 1\tau_{had}$ FF: CR statistics	SN	10
$2\ell OS + 1\tau_{had}$ FF: statistics	SN	5
$2\ell OS + 1\tau_{had}$ FF: real tau sub	SN	1
2ℓ SS+ $1\tau_{had}$ and 3ℓ + $1\tau_{had}$ SF correction: statistics	Ν	1
$2\ell SS+1\tau_{had}$ fake lepton rate	SN	10
2ℓ SS+1 τ_{had} QmisID: CR statistics	SN	2
$2\ell SS+1\tau_{had}$ bkg sub: statistics	SN	2
$2\ell SS+1\tau_{had} \gamma$ -conversion fraction	Ν	1
tau had fakes: composition	SN	2
$3\ell + 1\tau_{had}$ SF correction: MC statistics	Ν	1
TOTAL	_	40

MC samples

Process	Event generator	ME order	Parton Shower	PDF	Tune
$t\bar{t}H$	MG5_AMC	NLO	Pythia 8	NNPDF 3.0 NLO [71]	A14
	$(MG5_AMC)$	(NLO)	(Herwig++)	(CT10 [72])	(UE-EE-5)
tHqb	$MG5_AMC$	LO	Pythia 8	CT10	A14
tHW	$MG5_AMC$	NLO	HERWIG++	CT10	UE-EE-5
$t\bar{t}W$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	$(NNPDF \ 3.0 \ NLO)$	(Sherpa default)
$t\bar{t}(Z/\gamma^* \to ll)$	$MG5_AMC$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
	(Sherpa $2.1.1)$	(LO multileg)	(Sherpa $)$	$(NNPDF \ 3.0 \ NLO)$	(Sherpa default)
tZ	$MG5_AMC$	LO	Pythia 6	CTEQ6L1	Perugia2012
tWZ	$MG5_AMC$	NLO	Pythia 8	NNPDF 2.3 LO	A14
$t\bar{t}t,t\bar{t}t\bar{t}$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$t\bar{t}W^+W^-$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
$tar{t}$	Powheg-BOX v2 $[73]$	NLO	Pythia 8	NNPDF 3.0 NLO	A14
$tar{t}\gamma$	$MG5_AMC$	LO	Pythia 8	NNPDF 2.3 LO	A14
s-, t -channel,	Powheg-BOX v1 [74,75,76]	NLO	Pythia 6	CT10	Perugia2012
Wt single top					
$VV(\rightarrow llXX),$	Sherpa 2.1.1	MEPS NLO	Sherpa	CT10	Sherpa default
qqVV, VVV					
$Z \rightarrow l^+ l^-$	Sherpa 2.2.1	MEPS NLO	Sherpa	NNPDF 3.0 NLO	SHERPA default

Input variables for MVA

	Variable	$2\ell SS$	3ℓ	4ℓ	$1\ell + 2\tau_{had}$	$2\ell SS + 1\tau_{had}$	$2\ell OS + 1\tau_{had}$
	Leading lepton $p_{\rm T}$		Х				
	Second leading lepton $p_{\rm T}$	×	\times			×	
	Third lepton $p_{\rm T}$		×				
S	Dilepton invariant mass (all combinations)	×	$\times *$				×
rtie	Three-lepton invariant mass		×				
peı	Four-lepton invariant mass			X			
oro	Best Z-candidate dilepton invariant mass			X			
h n	Other Z-candidate dilepton invariant mass			X			
oto	Scalar sum of all leptons p_{T}			X			×
Jer	Second leading lepton track isolation			~		~	~
Π	Maximum $ n $ (lepton 0, lepton 1)	\checkmark				~	
	$ \begin{array}{c} \text{Maximum } \eta \text{ (lepton 0, lepton 1)} \\ \text{Lepton flower} \end{array} $	~	X.u			~*	
	Lepton navor	Χ*	× *				
	Lepton charge		×				
	Number of jets	X*	X*		×	×	×
	Number of <i>b</i> -tagged jets	X*	$\times *$		×	×	×
	Leading jet $p_{\rm T}$						×
S	Second leading jet $p_{\rm T}$		\times			$\times *$	
rti	Leading <i>b</i> -tagged jet $p_{\rm T}$		\times				
be	Scalar sum of all jets $p_{\rm T}$		\times		×	×	×
OIC	Scalar sum of all <i>b</i> -tagged jets $p_{\rm T}$						×
ц	Has leading jet highest b-tagging weight?		\times				
Je	b-tagging weight of leading jet		×				
	b-tagging weight of second leading jet		×			×	
	b-tagging weight of third leading jet					×	
	Pseudorapidity of fourth leading jet					×	
	Leading $\tau_{had} p_T$				×		×
-	Second leading $\tau_{had} p_T$				×		
hac	$\text{Di-}\tau_{\text{had}}$ invariant mass				×		
6	Invariant mass $\tau_{\rm hod}$ -furthest lepton					×	
	$\frac{\Lambda R(\text{lepton } 0 \text{ lepton } 1)}{\Lambda R(\text{lepton } 0 \text{ lepton } 1)}$		~			~	
	$\Delta R(\text{lepton 0, lepton 2})$		\sim				
	$\Delta R(\text{lepton 0, lepton 2})$	X	~				
	$\Delta R(\text{lepton 0, closest jet})$	~	~			X	
GS	$\Delta R(\text{lepton 0, leading jet})$		×			X	
nc	$\Delta R(\text{lepton 0, closest } b\text{-jet})$		×				
sta	$\Delta R(\text{lepton 1, closest jet})$	×	×				
di	$\Delta R(\text{lepton } 2, \text{closest jet})$		×				
ar	Smallest $\Delta R(\text{lepton, jet})$		×				×
gu	Smallest ΔR (lepton, <i>b</i> -tagged jet)						×
An	Smallest ΔR (non-tagged jet, b-tagged jet)						×
Ł	$\Delta R(ext{lepton } 0, au_{ ext{had}})$						×
	$\Delta R(\text{lepton } 1, \tau_{\text{had}})$						×
	Minimum ΔR between all jets				×		
	ΔR between two leading jets					×	
SS	Missing transverse momentum $E_{\rm T}^{\rm miss}$	Х		Х			
im.	Azimuthal separation $\Delta \phi$ (leading jet, $\overrightarrow{p_{\rm T}}^{\rm miss}$)		X				
$\stackrel{ ightarrow}{ ightarrow} \mathrm{T}d$	Transverse mass leptons $(H/Z \text{ decay}) - \overline{p_T}^{\text{miss}}$			×			
	Pseudo-Matrix-Element			X			

The variables used in cross-check analyses are indicated by a *

Correlation NPs

ATLAS

√s = 13 TeV, 36.1 fb⁻¹

ttH signal strength	100.0	-26.3	-0.7	-11.0	2.8	1.6	-4.9	-2.0	-1.9	-1.3	1.7	4.0	-22.4	-1.9
ttH cross section (scale variations)	-26.3	100.0	0.0	0.0	-0.0	-0.0	0.0	-0.2	0.1	-0.1	-0.0	-0.0	0.0	0.0
tZ cross section	-0.7	0.0	100.0	-2.9	0.4	-0.1	-0.4	0.0	0.2	0.1	4.7	-21.1	1.1	-0.3
3ℓ Non-prompt closure	-11.0	0.0	-2.9	100.0	-24.5	-0.2	0.9	0.4	0.2	0.2	3.7	-9.4	4.7	1.3
Non-prompt stat. in $3\ell t \overline{t} CR$	2.8	-0.0	0.4	-24.5	100.0	0.0	-0.3	-0.1	-0.1	-0.1	0.2	4.2	-0.8	0.1
Fake τ_{had} stat. in 1st bin of 1ℓ + $2\tau_{had}$	1.6	-0.0	-0.1	-0.2	0.0	100.0	-58.9	-0.1	-0.0	-0.0	0.0	0.1	-0.4	-0.1
Fake τ_{had} modeling (1 ℓ + 2 τ_{had})	-4.9	0.0	-0.4	0.9	-0.3	-58.9	100.0	0.5	0.1	0.3	-1.7	-2.4	1.2	-0.5
Fake τ_{had} low $p_T (2\ell OS + 1\tau_{had})$	-2.0	-0.2	0.0	0.4	-0.1	-0.1	0.5	100.0	30.4	13.9	-0.3	-0.4	0.1	-0.1
Fake τ_{had} comp. tt (2 ℓ OS+1 τ_{had})	-1.9	0.1	0.2	0.2	-0.1	-0.0	0.1	30.4	100.0	-63.4	-0.1	0.0	0.1	0.3
Fake τ_{had} comp. Z (2 ℓ OS+1 τ_{had})	-1.3	-0.1	0.1	0.2	-0.1	-0.0	0.3	13.9	-63.4	100.0	-0.2	-0.4	0.3	0.1
VV modeling (shower tune)	1.7	-0.0	4.7	3.7	0.2	0.0	-1.7	-0.3	-0.1	-0.2	100.0	61.4	1.2	-3.3
VV cross section	4.0	-0.0	-21.1	-9.4	4.2	0.1	-2.4	-0.4	0.0	-0.4	61.4	100.0	-1.3	24.9
Jet energy scale (pileup subtraction)	-22.4	0.0	1.1	4.7	-0.8	-0.4	1.2	0.1	0.1	0.3	1.2	-1.3	100.0	-6.1
Jet energy resolution	-1.9	0.0	-0.3	1.3	0.1	-0.1	-0.5	-0.1	0.3	0.1	-3.3	24.9	-6.1	100.0
	ttH signal strength	ttH cross section (scale variations)	tZ cross section	3ℓ Non-prompt closure	Non-prompt stat. in 3 <i>ℓ tī</i> CR	Fake $ au_{had}$ stat. in 1st bin of 1ℓ + $2 au_{had}$	Fake τ_{had} modeling (1 ℓ + $2\tau_{had}$)	Fake τ _{had} low <i>p</i> _T (2ℓOS+1τ _{had})	Fake τ _{had} comp. tt (2ℓOS+1τ _{had})	Fake τ _{had} comp. Z (2ℓOS+1 τ _{had})	VV modeling (shower tune)	VV cross section	Jet energy scale (pileup subtraction)	Jet energy resolution

Correlation min threshold = 20%

Multinomial classification

19

18

9

7

16

11

10

ttH

1.0

1.0

0.8

15

6

5

0.6

- * Explore multinomial classifiers to simultaneously define signal and control regions ERIMEN
 - Processes are separated in the space of a multiD observable
 - Define CRs and VRs with a topology similar to the SR

0.0 -

0.0

split it according to the density

1.0

0.8 -

0.6

0.4

 $0.2 \cdot$

0.0

0.0

"rare" processes, etc.

Rest groups bins that

do not contribute to

ttH and ttW and

speeds up the

algorithm

ttW

12

1

rest

17

14

4

3

2

0.4

0.2

• Clustering: add a single neighbouring bin to the seed and compute analytically the significance again; add the cell giving the largest improvement

0.2

0.4

0.6

0.8

≭tīH(H→cc̄):

- BR ~ 3 %, tt̄H is very difficult production search since also has 2 bjets from tt̄ (it would need both b- and c-taggers)
- *** tīH/tīZ** to measure top Yukawa coupling
 - ttH theory systematics 3rd leading in ttH(bb) and $t\bar{t}H(ML)!$
 - tīH and tīZ: **identical production mechanisms** + **mZ~mH** → **correlated** QCD corrections, scale dependence, alpha_S dependence, and PDF systematics
 - For a given y_{top}, σ(ttH)/σ(ttZ) can be predicted theoretically with a much better precision
- ***** CP mixture states of the Higgs

CP nature of ttH coupling

★ Program to probe CP nature of the discovered Higgs already underway (e.g. $H \rightarrow ZZ$)

* However, Higgs-fermion couplings provide **more sensitive probe of a CP-mixed state** than Higgs-bosons

 $\mathcal{L}_{hf\bar{f}} = -\sum_{f} \frac{m_f}{v} h\bar{f}(a_f + ib_f\gamma_5)f$

🗱 tīH production most direct probe of the Higgs-top coupling and the Higgs CP nature

Parametrise Higgs coupling to fermions:

• Scalar (a_f=1, b_f=0)

8

- Pseudo-scalar (a_f=0, b_f=1)
- **Mixed** CP properties $(a_f \neq 0, b_f \neq 0)$

Discriminating observables based on the kinematics of the tt
Higgs-top coupling: M_{ttH}, p_T^H, and ΔΦ(t,t
)

 $\Delta \theta^{\ell h}(\ell^+, \ell^-)$ = the angle between the two lepton momenta projected onto the plane perpendicular to the h direction in the lab frame

Tamara Vázquez Schröder

t**t**H (H→bb): tt̄ modelling

- MC sample split in number of HF jets at particle level
 - $t\overline{t}$ +≥1b: jets matched to 1(b) or 2(B) b hadrons
 - Extra *b*-jets from MPI or FSR
 - \circ $t\overline{t}+\geq 1c$: analogous to $t\overline{t}+\geq 1b$
 - $\circ t\bar{t}$ +light

b-tagging discriminant

- Large improvement in *b*-tagging performance in Run-2 due to the additional Insertable B-Layer (radius: 3.3 cm)
- Calibration derived from data:
 - *b*-jet efficiency: dileptonic $t\bar{t}$ (2-10% uncert.)
 - *c*-jet mistag: semileptonic $t\bar{t} (W \to cs), W+c$ (5-20% uncert.)
 - Light-flavour mistag: dijet events (10-50% uncert.)
- Four different working points, also calibration for discrete *b*-tagging discriminant combining all working points used in $t\bar{t}H(b\bar{b})$

- *b*-tagging:
 - Considering 4 working points: loose, medium, tight, very-tight
 - Efficiency for *b*-jets: $85\% \rightarrow 60\%$
 - Rejection factor for *c*-jets [light jets]: $3 \rightarrow 35$ [30 $\rightarrow 1500$]
 - *b*-tagging discriminant built as:

	none	loose	medium	tight	very-tight
Efficiency	-	85%	77%	70%	60%
Discriminant value	1	2	3	4	5

Tel 10³ ATLAS Simulation Preliminary without IBL with IBL 10²

tītH (H→bb): MVA analysis

- Sensitivity enhanced using multivariate techniques to discriminate signal from backgrounds
- 'Reconstruction' BDT (all resolved SRs):
 - Combination of jets as originating from H/top decays to reconstruct the $t\bar{t}H(b\bar{b})$ system
- Likelihood discriminator (LHD) (1 ℓ resolved SRs only):
 - Probability for signal/background (tt+≥2b, tt+1b) hypotheses using 1D distributions of discriminating variables (invariant mass, angular distributions, etc.)
- Matrix Element Method (MEM) (SR₁^{$\geq 6j$} only):
 - Signal/background probability using matrix element calculations at parton level

Reconstuction BDT

Likelihood discriminant

MEM discriminant

t**t**H (H→bb): fit model

Simultaneous profile likelihood fit to all SRs and CRs SRs binned in 'classification BDT' Ο • CRs: single bin, except $t\bar{t}+\geq 1c \ 1\ell$ -CRs (binned in $H_{\rm T}=\sum_{\rm jet} p_{\rm T}^{\rm Jet}$) Post-fit **Pre-fit** Events / bin 10⁶ Events / bin 10² ATLAS Preliminary ATLAS Preliminary Data ttH ∐tt + light Data ttH ∐tt + light √s = 13 TeV, 36.1 fb⁻¹ √s = 13 TeV, 36.1 fb⁻¹ <mark>∏tt</mark> + ≥1c **≣**tt + ≥1b 🗖 tt + V <u>tt</u> + ≥1c **tt** + ≥1b 🗖 tt + V Dilepton Non-tt ---ttH Dilepton Non-tt W Total unc. WTotal unc. ---ttH Pre-Fit Post-Fit 10⁵ 10⁵ 26 10⁴ 10 10³ 10^{3} 10² 10² 10 10 Data / Leg. 1.25 0.75 0.5 Data / Pred. 1 / Data / Dred. 0.75 0.5 CR 3j tt+light CR 3j tt+ligh CR 3j CR ≥4j tt+light CR 3j CR 24j tt+light CR 24 CR 24j SRE SRigaj SR34 SRigaj SR34 Events / bir Events / bir 10⁸ ATLAS Preliminary ttH ATLAS Preliminary ttH Data ∏tt + light Data √s = 13 TeV, 36.1 fb⁻¹ <mark>∏tt</mark> + ≥1c tt + ≥1b tt + V √s = 13 TeV, 36.1 fb⁻¹ <u>tt</u> + ≥1c **t**t + ≥1b 10⁷ 10^{7} Single Lepton Non-tt Single Lepton Non-tt ---ttH // Total unc. ---ttH Z Total unc. Post-Fit Pre-Fit 10⁶ 10⁶ 10⁵ 10 1ℓ 104 10⁴ 10³ 10³

tī́H (H→bb̄): tt modelling uncertainties

Systematic source	Description	<i>tī</i> categories
<i>tī</i> cross-section	Up or down by 6%	All, correlated
$k(t\bar{t} + \geq 1c)$	Free-floating $t\bar{t} + \ge 1c$ normalisation	$t\bar{t} + \geq 1c$
$k(t\bar{t} + \ge 1b)$	Free-floating $t\bar{t} + \ge 1b$ normalisation	$t\bar{t} + \geq 1b$
Sherpa5F vs. nominal	Related to the choice of the NLO generator	All, uncorrelated
PS & hadronisation	Powheg-Box+Herwig 7 vs. Powheg-Box+Pythia 8	All, uncorrelated
ISR / FSR	Variations of $\mu_{\rm R}$, $\mu_{\rm F}$, $h_{\rm damp}$ and A14 Var3c parameters	All, uncorrelated
$t\bar{t} + \geq 1c$ ME vs. inclusive	MG5_aMC@NLO+HerwiG++: ME prediction (3F) vs. incl. (5F)	$t\bar{t} + \geq 1c$
$t\bar{t} + \geq 1b$ Sherpa4F vs. nominal	Comparison of $t\bar{t} + b\bar{b}$ NLO (4F) vs. Powheg-Box+Pythia 8 (5F)	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ renorm. scale	Up or down by a factor of two	$t\bar{t} + \ge 1b$
$t\bar{t} + \ge 1b$ resumm. scale	Vary μ_Q from $H_T/2$ to μ_{CMMPS}	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ global scales	Set μ_Q , μ_R , and μ_F to μ_{CMMPS}	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 1b$ shower recoil scheme	Alternative model scheme	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{MSTW})$	MSTW vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b \text{ PDF} (\text{NNPDF})$	NNPDF vs. CT10	$t\bar{t} + \geq 1b$
$t\bar{t} + \geq 1b$ MPI	Up or down by 50%	$t\bar{t} + \geq 1b$
$t\bar{t} + \ge 3b$ normalisation	Up or down by 50%	$t\bar{t} + \geq 1b$

- Many sources of modelling uncertainty considered:
 - Generator: Powheg+Pythia8 vs. Sherpa (5F)
 - Parton shower: Powheg+Pythia8 vs. Powheg+Herwig7
 - 5F vs. 4F in Sherpa+OpenLoops
 - $\circ~$ Scale variations in Sherpa+OpenLoops
- All $t\bar{t}$ +jets modelling uncertainties uncorrelated between $t\bar{t}$ + $\geq 1b/\geq 1c/$ light
- Scale variation uncertainties correlated across each $t\overline{t}+\geq 1b$ sub-component

