

A_{FB} Reminder

- Forward-Backward Asymmetry
- Due to parity violation of the weak interaction
- Interference between vector and axial couplings
- Why measure AFB?
 - Extract $\sin^2 \theta_{W}$
 - Couplings of Z to quarks and to muons
 - Sensitive to New Physics

2011 Data (Stripping 13b 341pb⁻¹)

More data to come shortly...

Detector effects MC10

Most noticeable effect on and below Z peak

Unfolding

- Corrects for detector effects. Important to get raw A_{FB} distribution for comparison to theory and hence New Physics searches.
- Simple method: Produce correlation matrix. For each reconstructed mass bin, identify which generator bin the event came from. Separate for forward and backward events.
- Rij probability that an event reconstructed in bin i was generated in bin j

Unfolding

- Method statistics limited within MCI0
- Forward and backward matrices may turn out to be the same

Unfolding conclusion

- This method will correct for detector effects and unfold
 A_{FB} <u>BUT</u> dependant on the input distribution
- Currently extending to an iterative unfolding method to remove the dependence on the input distribution
- Trying to implement this with Roounfold
 - possibility to compare different unfolding techniques
 - better record of associated uncertainties

Method for extracting $\sin^2 \theta_{\rm W}$ following D0

I) Start with fully reconstructed MC

- 2) Use generator truth MC to create a weighting between reco and gen (for 2D distribution $\cos \theta^* vs M_{\mu \mu}$)
- 3) Reweight many generator samples each with different $\sin^2 \theta_{\rm W}$ to create "reconstructed" samples.
- 4) Extract $\sin^2 \theta_{W}$ using χ^2 fit to 2D distributions

2D distributions

10

LHCb Bi-Weekly Meeting 15/11/11

Implementing this...

- Need to produce a lot of MC for this to work
 - Decent sample of Z/ γ from MCII IM events
 - > 40 generator MC samples ~5M events each
 - Generator level so relatively quick
- For cross checks on reweighting procedure
 - Full MCII sample with different input value of $\sin^2 \theta_{\rm W}$
- Better and more complex methods available
 - CMS uses MVA method (Multivariate Analysis)
 - More parameters better fit
 - Will take time to develop

Electroweak Corrections

LHCb Bi-Weekly Meeting 15/11/11

EWK corrections with HORACE

Covers the following:

- 3. O(alpha) matched to higher order corrections
 - "EW Sudakov logarithms"

Dimuon spectrum

- Large corrections to A_{FB} below Z peak
- Similar scale for $O(\alpha)$ and $O(\alpha)$ + h.o. corrections
- In agreement to paper by Horace authors
- Calculating corrections for the current binning scheme

Useful references

- Unfolding & $\sin^2 \theta_{\rm W}$:
 - D0 thesis lss.fnal.gov/archive/thesis/fermilab-thesis-2010-18.pdf
 - PHYSTAT 2011 conference http://indico.cern.ch/conferenceDisplay.py? confld=107747
 - RooUnfold http://hepunx.rl.ac.uk/~adye/software/unfold/RooUnfold.html

• HORACE and EWK corrections:

- HORACE generator http://www2.pv.infn.it/~hepcomplex/horace.html
- HORACE paper with Afb http://arxiv.org/abs/0710.1722
- Electroweak corrections paper http://prd.aps.org/abstract/PRD/v65/i3/e033007

